Home
Class 12
MATHS
If f(x)= \sum{n=1}^{\infty }(sin nx)/(4^...

If `f(x)= \sum_{n=1}^{\infty }(sin nx)/(4^(n)) and int_(0)^(pi)f(x) dx="log" ((m)/(n))`, then the value of `(m+n)` is ….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral of the function \( f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{4^n} \) from \( 0 \) to \( \pi \) and express it in the form \( \log\left(\frac{m}{n}\right) \). ### Step 1: Write the integral of \( f(x) \) We start with the integral: \[ \int_0^{\pi} f(x) \, dx = \int_0^{\pi} \sum_{n=1}^{\infty} \frac{\sin(nx)}{4^n} \, dx \] ### Step 2: Interchange the summation and the integral Assuming we can interchange the summation and the integral (justified by uniform convergence), we have: \[ \int_0^{\pi} f(x) \, dx = \sum_{n=1}^{\infty} \frac{1}{4^n} \int_0^{\pi} \sin(nx) \, dx \] ### Step 3: Evaluate the integral \( \int_0^{\pi} \sin(nx) \, dx \) The integral of \( \sin(nx) \) over \( [0, \pi] \) is given by: \[ \int_0^{\pi} \sin(nx) \, dx = \left[-\frac{1}{n} \cos(nx)\right]_0^{\pi} = -\frac{1}{n} (\cos(n\pi) - \cos(0)) = -\frac{1}{n} (-1 - 1) = \frac{2}{n} \] ### Step 4: Substitute back into the summation Substituting this result back, we get: \[ \int_0^{\pi} f(x) \, dx = \sum_{n=1}^{\infty} \frac{1}{4^n} \cdot \frac{2}{n} = 2 \sum_{n=1}^{\infty} \frac{1}{n \cdot 4^n} \] ### Step 5: Evaluate the series \( \sum_{n=1}^{\infty} \frac{1}{n \cdot 4^n} \) This series can be recognized as the Taylor series expansion for \( -\log(1-x) \) evaluated at \( x = \frac{1}{4} \): \[ \sum_{n=1}^{\infty} \frac{x^n}{n} = -\log(1-x) \quad \text{for } |x| < 1 \] Thus, \[ \sum_{n=1}^{\infty} \frac{1}{n \cdot 4^n} = -\log\left(1 - \frac{1}{4}\right) = -\log\left(\frac{3}{4}\right) = \log\left(\frac{4}{3}\right) \] ### Step 6: Substitute back to find the integral Now substituting back, we have: \[ \int_0^{\pi} f(x) \, dx = 2 \cdot \log\left(\frac{4}{3}\right) = \log\left(\left(\frac{4}{3}\right)^2\right) = \log\left(\frac{16}{9}\right) \] ### Step 7: Relate to the given form \( \log\left(\frac{m}{n}\right) \) From the problem statement, we have: \[ \log\left(\frac{m}{n}\right) = \log\left(\frac{16}{9}\right) \] This implies \( m = 16 \) and \( n = 9 \). ### Step 8: Find \( m+n \) Finally, we calculate: \[ m+n = 16 + 9 = 25 \] Thus, the value of \( m+n \) is \( \boxed{25} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|4 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

Let f(x) = int_(0)^(pi)(sinx)^(n) dx, n in N then

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

int_(0)^(pi//2n)(dx)/(1+(tan nx)^(n)) is equal to n in N :

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then