Home
Class 12
MATHS
Let A=[{:(a,b,c),(p,q,r),(1,1,1):}]and B...

Let `A=[{:(a,b,c),(p,q,r),(1,1,1):}]and B=A^(2)`
If `(a-b)^(2) +(p-q)^(2) =25, (b-c) ^(2)+ (q-r)^(2)= 36 and (c-a)^(2) +(r-p)^(2)=49,` then det B is

A

192

B

864

C

2456

D

`25xx36xx47`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first analyze the given information and then calculate the required determinant. ### Step 1: Understand the Given Information We have a matrix \( A \) defined as: \[ A = \begin{pmatrix} a & b & c \\ p & q & r \\ 1 & 1 & 1 \end{pmatrix} \] We also know that \( B = A^2 \). We are given three equations: 1. \((a-b)^2 + (p-q)^2 = 25\) 2. \((b-c)^2 + (q-r)^2 = 36\) 3. \((c-a)^2 + (r-p)^2 = 49\) ### Step 2: Calculate the Lengths of the Sides of the Triangle From the equations, we can interpret them as the lengths of the sides of a triangle formed by the points \((a, p)\), \((b, q)\), and \((c, r)\). - **Length \( a \)**: \[ a = \sqrt{(a-b)^2 + (p-q)^2} \] From the first equation, we have: \[ a = \sqrt{25} = 5 \] - **Length \( b \)**: \[ b = \sqrt{(b-c)^2 + (q-r)^2} \] From the second equation, we have: \[ b = \sqrt{36} = 6 \] - **Length \( c \)**: \[ c = \sqrt{(c-a)^2 + (r-p)^2} \] From the third equation, we have: \[ c = \sqrt{49} = 7 \] ### Step 3: Calculate the Semi-Perimeter \( s \) The semi-perimeter \( s \) of the triangle is given by: \[ s = \frac{a + b + c}{2} = \frac{5 + 6 + 7}{2} = 9 \] ### Step 4: Calculate the Area of the Triangle Using Heron's Formula Using Heron's formula: \[ \text{Area} = \sqrt{s(s-a)(s-b)(s-c)} \] Substituting the values we found: \[ \text{Area} = \sqrt{9(9-5)(9-6)(9-7)} = \sqrt{9 \cdot 4 \cdot 3 \cdot 2} = \sqrt{216} = 6\sqrt{6} \] ### Step 5: Relate the Area to the Determinant of Matrix \( A \) The area of the triangle can also be expressed in terms of the determinant of matrix \( A \): \[ \text{Area} = \frac{1}{2} \cdot \text{det}(A) \] Thus, we have: \[ 6\sqrt{6} = \frac{1}{2} \cdot \text{det}(A) \] From this, we can find: \[ \text{det}(A) = 12\sqrt{6} \] ### Step 6: Calculate the Determinant of Matrix \( B \) Since \( B = A^2 \), we have: \[ \text{det}(B) = \text{det}(A)^2 \] Substituting the value of \( \text{det}(A) \): \[ \text{det}(B) = (12\sqrt{6})^2 = 144 \cdot 6 = 864 \] ### Final Answer Thus, the value of \( \text{det}(B) \) is: \[ \text{det}(B) = 864 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|23 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise PROPERTIES AND SOLUTIONS OF TRIANGLES EXERSISE 1: SINGLE OPTION CORRECT TYPE QUESTIONS|1 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

Let det A=|{:(l,m,n),(p,q,r),(1,1,1):}| and if (l-m)^2 + (p-q)^2 =9, (m-n)^2 + (q-r)^2=16, (n-l)^2 +(r-p)^2=25 , then the value ("det." A)^2 equals :

If a=x y^(p-1),\ b=x y^(q-1) and c=x y^(r-1) , prove that a^(q-r)b^(r-p)\ c^(p-q)=1

Knowledge Check

  • Delta=|{:(p,q,r),(p+2a,q+2b,r+2c),(a,b,c):}| then

    A
    a) `Delta=0`
    B
    b) `Delta=abc`
    C
    c) `Delta=pqr`
    D
    d) None of these
  • Similar Questions

    Explore conceptually related problems

    Show that : (4p q+3q)^2-(4q p-3q)^2=48 p q^2 (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0

    If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

    Let A = {p, q, r} and B = {1, 2}. Represent (i) A xx B (ii) B xx B

    The roots of the equation (q-r)x^2+(r-p)x+p-q=0 are (A) (r-p)/(q-r),1 (B) (p-q)/(q-r),1 (C) (q-r)/(p-q),1 (D) (r-p)/(p-q),1

    Without, prove that : |{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),:}|=2|{:(a,b,c),(p,q,r),(x,y,z):}|

    If |{:(a-b,b-c,c-a),(x-y,y-z,z-x),(p-q,q-r,r-p):}|=m|{:(c,a,b),(z,x,y),(r,p,q):}|," then m"=

    Match te columns (1) a-s, b-t, c-r, d-p (2) a-t, b-q, c-r, d-p (3) a-t, b-r, c-q, d-p (4) a-t, b-r, c-p, d-q