Home
Class 12
MATHS
Evaluate: int(x+1)\ sqrt(1-x-x^2)\ dx...

Evaluate: `int(x+1)\ sqrt(1-x-x^2)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (x + 1) \sqrt{1 - x - x^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by expressing \( x + 1 \) in terms of the derivative of the expression under the square root. We can write: \[ x + 1 = a \cdot \frac{d}{dx}(1 - x - x^2) + b \] where \( a \) and \( b \) are constants to be determined. ### Step 2: Find the Derivative The derivative of \( 1 - x - x^2 \) is: \[ \frac{d}{dx}(1 - x - x^2) = -1 - 2x \] Thus, we have: \[ x + 1 = a(-1 - 2x) + b \] ### Step 3: Expand and Compare Coefficients Expanding the right-hand side gives: \[ x + 1 = -2ax + (b - a) \] Now, we can compare coefficients: - For \( x \): \( -2a = 1 \) → \( a = -\frac{1}{2} \) - For the constant term: \( b - a = 1 \) → \( b = 1 + \frac{1}{2} = \frac{3}{2} \) ### Step 4: Substitute Back into the Integral Substituting \( a \) and \( b \) back, we have: \[ \int (x + 1) \sqrt{1 - x - x^2} \, dx = \int \left(-\frac{1}{2}(-1 - 2x) + \frac{3}{2}\right) \sqrt{1 - x - x^2} \, dx \] This simplifies to: \[ \int \left(\frac{1}{2}(1 + 2x) + \frac{3}{2}\right) \sqrt{1 - x - x^2} \, dx \] ### Step 5: Separate the Integral We can separate the integral into two parts: \[ \int \left(\frac{1}{2}(1 + 2x)\sqrt{1 - x - x^2} \, dx + \frac{3}{2}\sqrt{1 - x - x^2} \, dx\right) \] ### Step 6: Change of Variables Let \( t = 1 - x - x^2 \). Then, differentiating gives: \[ dt = (-1 - 2x) \, dx \quad \Rightarrow \quad dx = \frac{dt}{-1 - 2x} \] We can express \( x \) in terms of \( t \) and substitute back into the integral. ### Step 7: Solve the Integrals Now we can evaluate the integrals separately. The first integral can be solved using the substitution and recognizing the form of the integral. The second integral can be solved using the formula for the integral of a square root. ### Step 8: Final Integration After performing the integrations and substituting back, we will arrive at the final result: \[ -\frac{1}{3}(1 - x - x^2)^{3/2} + \frac{1}{2}(2x + 1)\sqrt{1 - x - x^2} + \frac{5}{8} \sin^{-1}(2x + 1) + C \] ### Final Answer Thus, the evaluated integral is: \[ -\frac{1}{3}(1 - x - x^2)^{3/2} + \frac{1}{2}(2x + 1)\sqrt{1 - x - x^2} + \frac{5}{8} \sin^{-1}(2x + 1) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x+1)\ sqrt(x^2-x+1)\ dx

Evaluate: int(x+1)\ sqrt(x^2+x+1)\ dx

Evaluate: int1/(x\ sqrt(a x-x^2))\ dx

Evaluate: int(1+x^2)/(sqrt(1-x^2))\ dx

Evaluate: int(x+2)\ sqrt(x^2+x+1)\ dx

Evaluate: int(1-x)\ sqrt(x)\ dx

Evaluate: int(x^2)/(sqrt(1-x^2))\ dx

Evaluate: int(x+1)/sqrt (1+x^2)dx

Evaluate: int1/((x+1)sqrt(x^2-1))\ dx

Evaluate: int1/((x+1)sqrt(x^2-1))\ dx