Home
Class 12
MATHS
int loge xdx = int 1/(logx e) dx =...

`int log_e xdx = int 1/(log_x e) dx = `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \log_e x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \log_e x \, dx \] Using the change of base formula for logarithms, we can express this as: \[ I = \int \frac{1}{\log_x e} \, dx \] However, we will proceed with the first form for simplicity. ### Step 2: Use Integration by Parts We will apply integration by parts, where we let: - \( u = \log_e x \) (thus \( du = \frac{1}{x} \, dx \)) - \( dv = dx \) (thus \( v = x \)) According to the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] We have: \[ I = x \log_e x - \int x \cdot \frac{1}{x} \, dx \] ### Step 3: Simplify the Integral The integral simplifies to: \[ I = x \log_e x - \int 1 \, dx \] Calculating the remaining integral gives: \[ I = x \log_e x - x + C \] ### Final Result Thus, the final result of the integral is: \[ \int \log_e x \, dx = x \log_e x - x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int (1+log_e x)/x dx

int log_(e)(a^(x))dx=

int " log"_(e) " x dx "

If a gt0 and a!=1 evaluate the following integrals: (i) int e^(xlog_(e)a)dx (ii) int e^(alog_(e)x)dx (iii) int e^x a^xdx (iv) int 2^(log_(e)x)dx

int(cos(log_ex))/xdx

The value of int x log x (log x - 1) dx is equal to

int cos (log_e x)dx is equal to

solve int x log xdx

I=int \ log_e (log_ex)/(x(log_e x))dx

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C