Home
Class 12
MATHS
I=int(dx)/((a+dx^2)sqrt(b-a x^2))...

`I=int(dx)/((a+dx^2)sqrt(b-a x^2))`

A

`(1)/(sqrt(a(a^(2)+b^(2))))tan^(-1)((xsqrt(a^(2)+b^(2)))/(asqrt(b-ax^(2))))+C`

B

`(1)/(sqrt((a^(2)+b^(2))))tan^(-1)((xsqrt(a^(2)+b^(2)))/(asqrt(b-ax^(2))))+C`

C

`(1)/(sqrt(a(a^(2)+b^(2))))tan^(-1)((xsqrt(a^(2)+b^(2)))/a)+C`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(a + dx^2) \sqrt{b - ax^2}}, \] we will follow the steps outlined in the video transcript. ### Step 1: Substitution Let \( x = \frac{1}{t} \). Then, we have: \[ dx = -\frac{1}{t^2} dt. \] ### Step 2: Substitute in the Integral Substituting \( x \) and \( dx \) into the integral gives: \[ I = \int \frac{-\frac{1}{t^2} dt}{\left(a + d\left(\frac{1}{t}\right)^2\right) \sqrt{b - a\left(\frac{1}{t}\right)^2}}. \] This simplifies to: \[ I = -\int \frac{dt}{t^2 \left(a + \frac{d}{t^2}\right) \sqrt{b - \frac{a}{t^2}}}. \] ### Step 3: Simplify the Denominator The denominator can be rewritten as: \[ a + \frac{d}{t^2} = \frac{at^2 + d}{t^2}, \] and \[ \sqrt{b - \frac{a}{t^2}} = \sqrt{\frac{bt^2 - a}{t^2}} = \frac{\sqrt{bt^2 - a}}{t}. \] Substituting these into the integral gives: \[ I = -\int \frac{dt}{\frac{at^2 + d}{t^2} \cdot \frac{\sqrt{bt^2 - a}}{t}} = -\int \frac{t^3 dt}{(at^2 + d) \sqrt{bt^2 - a}}. \] ### Step 4: Further Substitution Let \( z^2 = bt^2 - a \). Then, differentiating gives: \[ 2z dz = b \cdot 2t dt \implies t dt = \frac{z dz}{b}. \] ### Step 5: Substitute Back into the Integral Now, express \( t^2 \) in terms of \( z \): \[ bt^2 = z^2 + a \implies t^2 = \frac{z^2 + a}{b}. \] Substituting back into the integral gives: \[ I = -\int \frac{z dz}{(a \cdot \frac{z^2 + a}{b} + d) \sqrt{z^2}}. \] ### Step 6: Integrate Now we can simplify and integrate. The integral can be expressed in a standard form, and we can use the result: \[ \int \frac{dz}{z^2 + a^2} = \frac{1}{a} \tan^{-1}\left(\frac{z}{a}\right). \] ### Final Result After performing the integration and substituting back for \( z \) in terms of \( x \), we arrive at the final result: \[ I = -\frac{1}{\sqrt{a}} \cdot \frac{1}{\sqrt{a + b}} \tan^{-1}\left(\frac{\sqrt{b - ax^2}}{\sqrt{a + b}}\right) + C, \] where \( C \) is the constant of integration.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))) , then I equals

Evaluate: int(dx)/(sqrt(1-x^2))

int(dx)/(sqrt(1-9x^(2)))

(i) int(dx)/(x sqrt(4x^(2)-9))

int( dx)/(sqrt(x+a)+sqrt(x+b))

int_0^a(dx)/(sqrt(a x-x^2))

int(dx)/(sqrt((x-a)(b-x)))

int(dx)/(sqrt(x-x^(2))) equal is :

int(dx)/(sqrt(9-25x^(2)))

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then