Home
Class 12
MATHS
If tan(x/2)=cosec x - sin x then the val...

If `tan(x/2)=cosec x - sin x` then the value of `tan^2(x/2)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan\left(\frac{x}{2}\right) = \csc x - \sin x \) and find the value of \( \tan^2\left(\frac{x}{2}\right) \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \tan\left(\frac{x}{2}\right) = \csc x - \sin x \] ### Step 2: Use trigonometric identities Recall that: \[ \csc x = \frac{1}{\sin x} \] Thus, we can rewrite the right-hand side: \[ \tan\left(\frac{x}{2}\right) = \frac{1}{\sin x} - \sin x \] ### Step 3: Combine the terms To combine the terms on the right-hand side, we need a common denominator: \[ \tan\left(\frac{x}{2}\right) = \frac{1 - \sin^2 x}{\sin x} = \frac{\cos^2 x}{\sin x} \] (using the identity \( 1 - \sin^2 x = \cos^2 x \)) ### Step 4: Use the double angle formula for sine We know that: \[ \sin x = 2 \tan\left(\frac{x}{2}\right) \cdot \frac{1}{1 + \tan^2\left(\frac{x}{2}\right)} \] Let \( t = \tan\left(\frac{x}{2}\right) \). Then we can express \( \sin x \) in terms of \( t \): \[ \sin x = \frac{2t}{1 + t^2} \] ### Step 5: Substitute back into the equation Substituting \( \sin x \) into the equation gives: \[ t = \frac{\cos^2 x}{\frac{2t}{1 + t^2}} \] ### Step 6: Express \( \cos^2 x \) Using the identity \( \cos^2 x = 1 - \sin^2 x \): \[ \cos^2 x = 1 - \left(\frac{2t}{1 + t^2}\right)^2 = 1 - \frac{4t^2}{(1 + t^2)^2} \] ### Step 7: Simplify the equation Now substituting \( \cos^2 x \) into our equation: \[ t = \frac{1 - \frac{4t^2}{(1 + t^2)^2}}{\frac{2t}{1 + t^2}} \] ### Step 8: Cross-multiply and simplify Cross-multiplying gives: \[ t \cdot \frac{2t}{1 + t^2} = 1 - \frac{4t^2}{(1 + t^2)^2} \] This leads to: \[ 2t^2 = (1 + t^2)(1 - \frac{4t^2}{(1 + t^2)^2}) \] ### Step 9: Solve the resulting equation After simplifying, we arrive at a polynomial equation in terms of \( t^2 \). Let \( y = t^2 \), leading to: \[ y^2 + 4y - 1 = 0 \] ### Step 10: Use the quadratic formula Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{16 + 4}}{2} = \frac{-4 \pm \sqrt{20}}{2} \] This simplifies to: \[ y = -2 \pm \sqrt{5} \] ### Final Result Thus, the value of \( \tan^2\left(\frac{x}{2}\right) \) is: \[ \tan^2\left(\frac{x}{2}\right) = -2 + \sqrt{5} \quad \text{(taking the positive root)} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|9 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If A=tan^(-1) x ,x in R then the value of sin 2A is

If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4 , then the value of 2 tan^(2)x is

Knowledge Check

  • If sec 1.4=x, find the value of csc (2tan^(-1)x) .

    A
    0.33
    B
    0.87
    C
    1
    D
    3.03
  • Similar Questions

    Explore conceptually related problems

    If tan x = -(4)/(3), (pi)/(2) lt x lt pi , then find the value of sin(x/2), cos(x/2) and tan(x/2) .

    If tan1^(@).tan2^(@).tan^(@)"………tan89^(@) = 4x^(2) + 2x then the value of x is

    If 4 sin^(2) x + cosec^(2)x, a , sin^(2)y+4 cosec^(2)y are in AP, then minimum value of (2a) is

    If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

    If x in ( - pi/2, pi/2) , then the value of tan^(-1) ((tan x)/4) + tan^(-1) ((3 sin 2x)/(5 + 3 cos 2x)) is

    If tan^(-1)x = theta , find the value of sin^(-1).(2x)/(1+x^(2))

    If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)