Home
Class 12
MATHS
Suppose cos x = 0 and cos(x+z)=1/2. Then...

Suppose `cos x = 0` and `cos(x+z)=1/2`. Then, the possible value (s) of `z` is (are).

A

(a) `pi/6`

B

(b) `(5pi)/(6)`

C

(c) `(7pi)/(6)`

D

(d) `(11pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions: 1. \( \cos x = 0 \) 2. \( \cos(x + z) = \frac{1}{2} \) ### Step 1: Analyze \( \cos x = 0 \) The cosine function is zero at specific angles. The general solutions for \( x \) where \( \cos x = 0 \) are: \[ x = \frac{\pi}{2} + n\pi \quad \text{for } n \in \mathbb{Z} \] ### Step 2: Substitute \( x \) into the second equation Given \( \cos(x + z) = \frac{1}{2} \), we can use the cosine addition formula: \[ \cos(x + z) = \cos x \cos z - \sin x \sin z \] Substituting \( \cos x = 0 \): \[ 0 \cdot \cos z - \sin x \sin z = \frac{1}{2} \] This simplifies to: \[ -\sin x \sin z = \frac{1}{2} \] Thus, \[ \sin x \sin z = -\frac{1}{2} \] ### Step 3: Determine \( \sin x \) Since \( \cos x = 0 \), we can find \( \sin x \): \[ \sin^2 x + \cos^2 x = 1 \implies \sin^2 x + 0 = 1 \implies \sin x = \pm 1 \] Thus, \( \sin x = 1 \) or \( \sin x = -1 \). ### Step 4: Case 1: \( \sin x = 1 \) Substituting \( \sin x = 1 \) into the equation: \[ 1 \cdot \sin z = -\frac{1}{2} \implies \sin z = -\frac{1}{2} \] The solutions for \( \sin z = -\frac{1}{2} \) are: \[ z = \frac{7\pi}{6} + 2k\pi \quad \text{and} \quad z = \frac{11\pi}{6} + 2k\pi \quad \text{for } k \in \mathbb{Z} \] ### Step 5: Case 2: \( \sin x = -1 \) Substituting \( \sin x = -1 \) into the equation: \[ -1 \cdot \sin z = -\frac{1}{2} \implies \sin z = \frac{1}{2} \] The solutions for \( \sin z = \frac{1}{2} \) are: \[ z = \frac{\pi}{6} + 2k\pi \quad \text{and} \quad z = \frac{5\pi}{6} + 2k\pi \quad \text{for } k \in \mathbb{Z} \] ### Step 6: Compile all possible values of \( z \) From both cases, we have the following possible values for \( z \): 1. \( z = \frac{\pi}{6} \) 2. \( z = \frac{5\pi}{6} \) 3. \( z = \frac{7\pi}{6} \) 4. \( z = \frac{11\pi}{6} \) ### Final Answer The possible values of \( z \) are: \[ z = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|52 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y) , where xy< 0, then the possible value of z is (are)

If cos(pi/4-x)cos2x+sinxsin2xsecx=cos x sin 2x sec x+cos(pi/4+x)cos 2x then possible value of sec x is

In a triangle /_\ XYZ, let a,b, c be the lengths o the sides opposite to the angle X,Y and Z respectively. If 1+cos2X-2cos2Y=2sinXsinY, then positive value (s) of a/b is (are

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x=y=z and xyz ≥ 3 sqrt(3) , then

If z is a complex number satisfying z^4+z^3+2z^2+z+1=0 then the set of possible values of z is

If z is a complex number satisfying z^4+z^3+2z^2+z+1=0 then the set of possible values of z is

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x+y+z=xyz , then

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x^2 + y^2+z^2 = 1, & \ x+y+z=sqrt(3) , then

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if xy+yz+zx=1 , then

If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero solution, then the possible value of k are a. -1,2 b. 1,2 c. 0,1 d. -1,1