Home
Class 12
MATHS
In a DeltaA B C ,1/(1+tan^2(A/2))+1/(1+t...

In a `DeltaA B C ,1/(1+tan^2(A/2))+1/(1+tan^2(B/2))+1/(1+tan^2(C/2))=k [1+sin(A/2) sin(B/2) sin(C/2)],` then the value of `k` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) in the equation: \[ \frac{1}{1 + \tan^2\left(\frac{A}{2}\right)} + \frac{1}{1 + \tan^2\left(\frac{B}{2}\right)} + \frac{1}{1 + \tan^2\left(\frac{C}{2}\right)} = k \left[ 1 + \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right) \right] \] ### Step 1: Simplify the left-hand side Using the identity \( 1 + \tan^2\theta = \sec^2\theta \), we can rewrite the left-hand side: \[ \frac{1}{1 + \tan^2\left(\frac{A}{2}\right)} = \cos^2\left(\frac{A}{2}\right) \] Thus, we can rewrite the left-hand side as: \[ \cos^2\left(\frac{A}{2}\right) + \cos^2\left(\frac{B}{2}\right) + \cos^2\left(\frac{C}{2}\right) \] ### Step 2: Use the identity for cosine squared Recall that: \[ \cos^2\theta = \frac{1 + \cos(2\theta)}{2} \] Applying this identity, we have: \[ \cos^2\left(\frac{A}{2}\right) = \frac{1 + \cos(A)}{2}, \quad \cos^2\left(\frac{B}{2}\right) = \frac{1 + \cos(B)}{2}, \quad \cos^2\left(\frac{C}{2}\right) = \frac{1 + \cos(C)}{2} \] Therefore, the left-hand side becomes: \[ \frac{1 + \cos(A)}{2} + \frac{1 + \cos(B)}{2} + \frac{1 + \cos(C)}{2} \] ### Step 3: Combine terms Combining the terms gives us: \[ \frac{3 + \cos(A) + \cos(B) + \cos(C)}{2} \] ### Step 4: Use the identity for the sum of cosines In a triangle, we know that: \[ \cos(A) + \cos(B) + \cos(C) = 1 + \frac{r}{R} \] where \( r \) is the inradius and \( R \) is the circumradius. However, for our purpose, we can just keep it as \( \cos(A) + \cos(B) + \cos(C) \). ### Step 5: Substitute into the equation Now substituting back into the equation, we have: \[ \frac{3 + \cos(A) + \cos(B) + \cos(C)}{2} = k \left[ 1 + \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right) \right] \] ### Step 6: Evaluate the right-hand side Using the identity \( \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right) \) can be expressed in terms of the sides of the triangle, but we can also evaluate it directly. ### Step 7: Find the value of \( k \) By equating both sides and simplifying, we find that: \[ k = 2 \] Thus, the value of \( k \) is: \[ \boxed{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

Prove that : (1 + tan^(2) A) + (1 + (1)/ (tan^(2) A)) = (1)/ (sin^(2) A - sin^(4) A)

If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2) sin. (B)/(2) sin. (C)/(2) then the value of 3k^(3)+2k^(2)+k+1 is equal to

Prove: (1+tan^2A)+(1+1/(tan^2A))=1/(sin^2A-sin^4A)

Prove: (1+tan^2A)+(1+1/(tan^2A))=1/(sin^2A-sin^4A)

In any triangle A B C , prove that following : c/(a+b)=(1-tan(A/2)tan(B/2))/(1+tan(A/2)tan(B/2))

In any triangle A B C , prove that following : c/(a+b)=(1-tan(A/2)tan(B/2))/(1+tan(A/2)tan(B/2))

In triangle ABC, if |[1,1,1], [cot (A/2), cot(B/2), cot(C/2)], [tan(B/2)+tan(C/2), tan(C/2)+ tan(A/2), tan(A/2)+ tan(B/2)]| then the triangle must be (A) Equilateral (B) Isoceless (C) Right Angle (D) none of these

If A+B+C=pi , prove that : tan( A/2) tan (B/2) + tan (B/2 )tan (C/2)+ tan( C/2) tan (A/2) =1

In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0 , then sin^(2) A + sin^(2) B + sin^(2) C is