Home
Class 12
MATHS
If vec aa n d vec b are two vectors suc...

If ` vec aa n d vec b` are two vectors such that `| vec axx vec b|=2,` then find the value of `[ vec a vec b vec axx vec b]dot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the scalar triple product \([ \vec{a}, \vec{b}, \vec{a} \times \vec{b} ]\) given that \(| \vec{a} \times \vec{b} | = 2\). ### Step-by-Step Solution: 1. **Understanding the Scalar Triple Product**: The scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ]\) can be expressed as \(\vec{a} \cdot (\vec{b} \times \vec{c})\). In our case, we need to evaluate \([ \vec{a}, \vec{b}, \vec{a} \times \vec{b} ]\). 2. **Applying the Scalar Triple Product Property**: We can rearrange the scalar triple product: \[ [ \vec{a}, \vec{b}, \vec{a} \times \vec{b} ] = \vec{a} \cdot (\vec{b} \times (\vec{a} \times \vec{b})) \] By the vector triple product identity, we have: \[ \vec{b} \times (\vec{a} \times \vec{b}) = (\vec{b} \cdot \vec{b}) \vec{a} - (\vec{b} \cdot \vec{a}) \vec{b} \] 3. **Substituting Back**: Now substituting this back into our expression: \[ [ \vec{a}, \vec{b}, \vec{a} \times \vec{b} ] = \vec{a} \cdot \left( (\vec{b} \cdot \vec{b}) \vec{a} - (\vec{b} \cdot \vec{a}) \vec{b} \right) \] 4. **Calculating Each Term**: - The first term is \(\vec{a} \cdot ((\vec{b} \cdot \vec{b}) \vec{a}) = (\vec{b} \cdot \vec{b}) (\vec{a} \cdot \vec{a})\). - The second term is \(\vec{a} \cdot (-(\vec{b} \cdot \vec{a}) \vec{b}) = -(\vec{b} \cdot \vec{a}) (\vec{a} \cdot \vec{b})\). 5. **Combining the Results**: Therefore, we have: \[ [ \vec{a}, \vec{b}, \vec{a} \times \vec{b} ] = (\vec{b} \cdot \vec{b}) (\vec{a} \cdot \vec{a}) - (\vec{b} \cdot \vec{a})^2 \] 6. **Using the Magnitude of the Cross Product**: We know that \(| \vec{a} \times \vec{b} | = 2\). The magnitude of the cross product is given by: \[ | \vec{a} \times \vec{b} | = |\vec{a}| |\vec{b}| \sin \theta = 2 \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). 7. **Finding the Final Value**: The scalar triple product can also be expressed as: \[ [ \vec{a}, \vec{b}, \vec{a} \times \vec{b} ] = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2 \] This is equivalent to the squared area of the parallelogram formed by \(\vec{a}\) and \(\vec{b}\), which is \(|\vec{a} \times \vec{b}|^2\). Therefore: \[ [ \vec{a}, \vec{b}, \vec{a} \times \vec{b} ] = | \vec{a} \times \vec{b} |^2 = 2^2 = 4 \] ### Final Answer: The value of \([ \vec{a}, \vec{b}, \vec{a} \times \vec{b} ]\) is **4**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|71 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|18 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let vec a and vec b be unit vectors such that | vec a+ vec b|=sqrt(3) . Then find the value of (2 vec a+5 vec b).((3 vec a+ vec b+ vec axx vec b))dot

If vec a\ a n d\ vec b are two vectors such that | vec a|=| vec axx vec b|, write the angle between vec a\ a n d\ vec bdot

If | vec a|=2| vec b|=5 and | vec axx vec b|=8, then find the value of vec a . vec bdot

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec ba n d vec c are two-noncollinear vectors such that vec a||( vec bxx vec c), then prove that ( vec axx vec b) . ( vec axx vec c) is equal to | vec a|^2( vec bdot vec c)dot

If vec a\ a n d\ vec b are unit vectors such that vec axx vec b is also a unit vector, find the angle between vec a\ a n d\ vec bdot

If vec a and vec b are two vectors, then prove that ( vec axx vec b)^2=|[vec a.vec a,vec a.vec b],[vec b.vec a,vec b.vec b]| .

Given | vec a|=| vec b|=1a n d| vec a+ vec b|=sqrt(3). If vec c is a vector such that vec c- vec a-2 vec b=3( vec axx vec b), then find the value of vec c. vec b

If two vectors vec a\ a n d\ vec b are such that | vec a|=2,\ | vec b|=1\ a n d\ vec adot vec b=1, then find rthe value of (3 vec a-5 vec b)dot'(2 vec a+7 vec b)'dot