Home
Class 12
MATHS
Evaluate : int"sin"^(3) x "cos"^(4) x dx...

Evaluate : `int"sin"^(3) x "cos"^(4) x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \sin^3 x \cos^4 x \, dx \), we can use the substitution method. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \sin^3 x \cos^4 x \, dx \] We can rewrite \( \sin^3 x \) as \( \sin^2 x \cdot \sin x \). This allows us to express \( \sin^2 x \) in terms of \( \cos^2 x \): \[ \sin^2 x = 1 - \cos^2 x \] Thus, we have: \[ \sin^3 x = \sin^2 x \cdot \sin x = (1 - \cos^2 x) \sin x \] Now, substituting this back into the integral gives: \[ \int (1 - \cos^2 x) \sin x \cos^4 x \, dx \] ### Step 2: Substitution Let’s use the substitution: \[ t = \cos x \quad \Rightarrow \quad dt = -\sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -dt \] Now, substituting \( t \) into the integral: \[ \int (1 - t^2) t^4 (-dt) = -\int (1 - t^2) t^4 \, dt \] This simplifies to: \[ -\int (t^4 - t^6) \, dt \] ### Step 3: Integrate Now we can integrate term by term: \[ -\left( \frac{t^5}{5} - \frac{t^7}{7} \right) + C \] This simplifies to: \[ -\frac{t^5}{5} + \frac{t^7}{7} + C \] ### Step 4: Substitute Back Now we substitute back \( t = \cos x \): \[ -\frac{\cos^5 x}{5} + \frac{\cos^7 x}{7} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \sin^3 x \cos^4 x \, dx = \frac{\cos^7 x}{7} - \frac{\cos^5 x}{5} + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICS-2020

    ICSE|Exercise SECTION B|8 Videos
  • MATHEMATICS-2020

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2016

    ICSE|Exercise SECTION-C|6 Videos
  • MATRICES

    ICSE|Exercise MULTIPLE CHOICE QUESTION (Competency based questions)|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int x^(3) " cos " x^(4) " dx "

Evaluate : int (1)/(" sin"^(2) x " cos"^(2) x ") ") " dx "

Evaluate int(4)/(sin^(4)x+cos^(4)x)dx

Evaluate int x sin 3x dx .

Evaluate int x sin 3x dx .

Evaluate int(sin^(6)x)/(cos^(8)x)dx

Evaluate : int " sin 5x . cos x dx "

Evaluate: int1/(sin^2x cos^2x)\ dx

Evaluate : int ( " 4+3 sin x ")/(" cos"^(2) x) " dx "

Evaluate : int e^(x) cos^(2) x (cos x-3 sin x ) dx