Home
Class 9
MATHS
Prove that : (i) ((tan 60^(@)+1)/(tan ...

Prove that :
(i) `((tan 60^(@)+1)/(tan 60^(@) - 1))^(2) = (1 + cos 30^(@))/(1 - cos 30^(@))`
(ii) `3 "cosec"^(2) 60^(@) - 2 cot^(2) 30^(@) + sec^(2) 45^(@) = 0`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Part (i): Prove that \[ \left(\frac{\tan 60^\circ + 1}{\tan 60^\circ - 1}\right)^{2} = \frac{1 + \cos 30^\circ}{1 - \cos 30^\circ} \] **Step 1: Calculate \(\tan 60^\circ\)** We know that: \[ \tan 60^\circ = \sqrt{3} \] **Step 2: Substitute \(\tan 60^\circ\) into the left-hand side (LHS)** Substituting the value of \(\tan 60^\circ\): \[ \text{LHS} = \left(\frac{\sqrt{3} + 1}{\sqrt{3} - 1}\right)^{2} \] **Step 3: Simplify the expression** We can simplify the fraction: \[ \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = \frac{(\sqrt{3} + 1)^2}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{3 + 2\sqrt{3} + 1}{3 - 1} = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] Thus, \[ \text{LHS} = (2 + \sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] **Step 4: Calculate \(\cos 30^\circ\)** We know that: \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \] **Step 5: Substitute \(\cos 30^\circ\) into the right-hand side (RHS)** Substituting the value of \(\cos 30^\circ\): \[ \text{RHS} = \frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}} = \frac{\frac{2 + \sqrt{3}}{2}}{\frac{2 - \sqrt{3}}{2}} = \frac{2 + \sqrt{3}}{2 - \sqrt{3}} \] **Step 6: Rationalize the RHS** To simplify: \[ \text{RHS} = \frac{(2 + \sqrt{3})^2}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{4 + 4\sqrt{3} + 3}{4 - 3} = 7 + 4\sqrt{3} \] **Step 7: Conclusion** Since LHS = RHS, we have: \[ \left(\frac{\tan 60^\circ + 1}{\tan 60^\circ - 1}\right)^{2} = \frac{1 + \cos 30^\circ}{1 - \cos 30^\circ} \] Thus, the first part is proved. ### Part (ii): Prove that \[ 3 \csc^2 60^\circ - 2 \cot^2 30^\circ + \sec^2 45^\circ = 0 \] **Step 1: Calculate \(\csc 60^\circ\)** We know that: \[ \csc 60^\circ = \frac{1}{\sin 60^\circ} = \frac{2}{\sqrt{3}} \quad \text{(since } \sin 60^\circ = \frac{\sqrt{3}}{2}\text{)} \] Thus, \[ \csc^2 60^\circ = \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4}{3} \] **Step 2: Calculate \(\cot 30^\circ\)** We know that: \[ \cot 30^\circ = \frac{1}{\tan 30^\circ} = \sqrt{3} \] Thus, \[ \cot^2 30^\circ = (\sqrt{3})^2 = 3 \] **Step 3: Calculate \(\sec 45^\circ\)** We know that: \[ \sec 45^\circ = \frac{1}{\cos 45^\circ} = \sqrt{2} \] Thus, \[ \sec^2 45^\circ = (\sqrt{2})^2 = 2 \] **Step 4: Substitute values into the equation** Now substituting these values into the equation: \[ 3 \left(\frac{4}{3}\right) - 2(3) + 2 = 0 \] **Step 5: Simplify the equation** Calculating: \[ 4 - 6 + 2 = 0 \] Thus, we have: \[ 0 = 0 \] **Step 6: Conclusion** Since LHS = RHS, we have: \[ 3 \csc^2 60^\circ - 2 \cot^2 30^\circ + \sec^2 45^\circ = 0 \] Thus, the second part is proved.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (3 MARKS QUESTIONS )|6 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -3 ( SOLUTION OF RIGHT TRIANGLES ANGLES ) (4 MARKS QUESTIONS )|5 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -2 ( TRIGONOMETRIC RATIOS OF STANDARD ANGLES ) (3 MARKS QUESTIONS )|9 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos

Similar Questions

Explore conceptually related problems

Prove that : ((tan60^(@)+1)/(tan60^(@)-1))^(2)=(1+cos30^(@))/(1-cos30^(@))

Prove that : 3cosec^(2)60^(@)-2cot^(2)30^(@)+sec^(2)45^(@)=0 .

Prove that : 3cosec^(2)60^(@)-2cot^(2)30^(@)+sec^(2)45^(@)=0 .

Find the value of : (i) (tan 45^(@))/("cosec 30"^(@)) + (sec 60^(@))/(cot 45^(@)) - (5 sin 90^(@))/(2 cos 0^(@)) (ii) 3 sin^(2)30^(@) + 2 tan^(2)60^(@) - 5 cot^(2)45

Find the value of : cosec^(2)60^(@)-tan^(2)30^(@)

Find the value of : cosec^(2)60^(@)-tan^(2)30^(@)

Prove that : (i) sin 60^(@) = 2 sin 30^(@) cos 30^(@) (ii) 4(sin^(4) 30^(@) + cos^(4) 60^(@)) - 3(cos^(2)45 - sin^(2)90^(@)) = 2

Show that : cos 60^(@)=2cos^(2)30^(@)-1

Find the value of : cos^(2)60^(@)+sec^(2)30^(@)+tan^(2)45^(@)

Find the value of : cos^(2)60^(@)+sec^(2)30^(@)+tan^(2)45^(@)