Home
Class 11
PHYSICS
If vec(F ) = hat(i) +2 hat(j) + hat(k) a...

If `vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k)` what is `vec(F) . vec(v)` ?

Text Solution

AI Generated Solution

The correct Answer is:
To find the dot product of the vectors \(\vec{F}\) and \(\vec{V}\), we can follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{F} = \hat{i} + 2\hat{j} + \hat{k} \] \[ \vec{V} = 4\hat{i} - \hat{j} + 7\hat{k} \] ### Step 2: Apply the dot product formula The dot product of two vectors \(\vec{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}\) and \(\vec{B} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}\) is given by: \[ \vec{A} \cdot \vec{B} = a_1b_1 + a_2b_2 + a_3b_3 \] ### Step 3: Identify the components From the vectors: - For \(\vec{F}\): \(a_1 = 1\), \(a_2 = 2\), \(a_3 = 1\) - For \(\vec{V}\): \(b_1 = 4\), \(b_2 = -1\), \(b_3 = 7\) ### Step 4: Calculate the dot product Now, substitute the components into the dot product formula: \[ \vec{F} \cdot \vec{V} = (1)(4) + (2)(-1) + (1)(7) \] ### Step 5: Perform the calculations Calculating each term: - First term: \(1 \cdot 4 = 4\) - Second term: \(2 \cdot -1 = -2\) - Third term: \(1 \cdot 7 = 7\) Now, add these results together: \[ \vec{F} \cdot \vec{V} = 4 - 2 + 7 \] \[ = 2 + 7 = 9 \] ### Final Answer Thus, the dot product \(\vec{F} \cdot \vec{V} = 9\). ---

To find the dot product of the vectors \(\vec{F}\) and \(\vec{V}\), we can follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{F} = \hat{i} + 2\hat{j} + \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise UNSOLVED PROBLEMS |79 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

If vec(A) = 3hat(i) - 4hat(j) + hat(k) and vec(B) = 4hat(j) + phat(i) + hat(k) for what value of p, vec(A) and vec(B) will ve collinear ?

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(F ) = (60 hat(i) + 15 hat(j) - 3 hat(k)) N and vec(V) = (2 hat(i) - 4 hat(j) + 5 hat(k)) m/s, then instantaneous power is:

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a)= hat(i) + hat(j) + hat(k) and vec(b)= hat(j)-hat(k) , then find vec(c ) such that vec(a ) xx vec(c )= vec(b) and vec(a).vec(c )=3 .

ICSE-VECTORS SCALARS ELEMENTARY CALCULUS -FROM SCALAR PRODUCT AND VECTOR PRODUCT
  1. If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) +...

    Text Solution

    |

  2. Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k...

    Text Solution

    |

  3. Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What i...

    Text Solution

    |

  4. If hat(i) and hat(j) are unit vectors x and y axes repsectively , wha...

    Text Solution

    |

  5. The result of scalar product and the vector product of two given vecto...

    Text Solution

    |

  6. The magnitude to two vectors are sqrt(61) and sqrt(78) .If their scal...

    Text Solution

    |

  7. Given vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j)...

    Text Solution

    |

  8. Simplify : (i) | vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2) (ii) | v...

    Text Solution

    |

  9. Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) ...

    Text Solution

    |

  10. The diagonals of a parallelogram are given by the vectors (3 hat(i) + ...

    Text Solution

    |

  11. Obtain the condition for the two vectors vec(A) = x(1) hat(i) + y(1)ha...

    Text Solution

    |

  12. What are the values of the following vec(A) . vec(A)

    Text Solution

    |

  13. What are the values of the following vec(A) xx vec(A)

    Text Solution

    |

  14. What are the values of the following vec(B) xx vec(A) , " if " vec(A...

    Text Solution

    |

  15. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  16. The vector vec(F ) is a force of 3.0 newton making an angle of 60^(@)...

    Text Solution

    |

  17. If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k...

    Text Solution

    |

  18. Find the cross product vec(r ) xx vec(F) " given " vec(F ) = hat(i) + ...

    Text Solution

    |

  19. Two vectors 5hat(i) + 7hat(j) - 3hat(k) and 2 hat(i) + 2hat(j) - a hat...

    Text Solution

    |

  20. Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec...

    Text Solution

    |