Home
Class 11
PHYSICS
If vec(F ) = hat(i) +2 hat(j) + hat(k) a...

If `vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k)` what is `vec(F) . vec(v)` ?

Text Solution

AI Generated Solution

The correct Answer is:
To find the dot product of the vectors \(\vec{F}\) and \(\vec{V}\), we can follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{F} = \hat{i} + 2\hat{j} + \hat{k} \] \[ \vec{V} = 4\hat{i} - \hat{j} + 7\hat{k} \] ### Step 2: Apply the dot product formula The dot product of two vectors \(\vec{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}\) and \(\vec{B} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}\) is given by: \[ \vec{A} \cdot \vec{B} = a_1b_1 + a_2b_2 + a_3b_3 \] ### Step 3: Identify the components From the vectors: - For \(\vec{F}\): \(a_1 = 1\), \(a_2 = 2\), \(a_3 = 1\) - For \(\vec{V}\): \(b_1 = 4\), \(b_2 = -1\), \(b_3 = 7\) ### Step 4: Calculate the dot product Now, substitute the components into the dot product formula: \[ \vec{F} \cdot \vec{V} = (1)(4) + (2)(-1) + (1)(7) \] ### Step 5: Perform the calculations Calculating each term: - First term: \(1 \cdot 4 = 4\) - Second term: \(2 \cdot -1 = -2\) - Third term: \(1 \cdot 7 = 7\) Now, add these results together: \[ \vec{F} \cdot \vec{V} = 4 - 2 + 7 \] \[ = 2 + 7 = 9 \] ### Final Answer Thus, the dot product \(\vec{F} \cdot \vec{V} = 9\). ---

To find the dot product of the vectors \(\vec{F}\) and \(\vec{V}\), we can follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{F} = \hat{i} + 2\hat{j} + \hat{k} \] \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise UNSOLVED PROBLEMS |79 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

If vec(A) = 3hat(i) - 4hat(j) + hat(k) and vec(B) = 4hat(j) + phat(i) + hat(k) for what value of p, vec(A) and vec(B) will ve collinear ?

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Knowledge Check

  • If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

    A
    `(5 sqrt(6))/(3)`
    B
    `(5)/(sqrt(6))`
    C
    `(5)/(sqrt(6))`
    D
    `5 sqrt(6)`
  • If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

    A
    all real p
    B
    no real p
    C
    p =-1
    D
    p =1
  • If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

    A
    `(pi)/(2)`
    B
    `(pi)/(2)`
    C
    `(pi)/(6)`
    D
    `pi`
  • Similar Questions

    Explore conceptually related problems

    If vec(F ) = (60 hat(i) + 15 hat(j) - 3 hat(k)) N and vec(V) = (2 hat(i) - 4 hat(j) + 5 hat(k)) m/s, then instantaneous power is:

    If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

    If vec(a)= hat(i) + hat(j) + hat(k) and vec(b)= hat(j)-hat(k) , then find vec(c ) such that vec(a ) xx vec(c )= vec(b) and vec(a).vec(c )=3 .

    If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

    If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is