Home
Class 11
PHYSICS
Given vec(A) = hat(i) - 2hat(j) - 3hat(k...

Given `vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j) + 6hat(k)` .Calculate the angle made by `(vec(A) +vec(B))` with the x - axis ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the angle made by the vector \(\vec{C} = \vec{A} + \vec{B}\) with the x-axis, we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{A} = \hat{i} - 2\hat{j} - 3\hat{k} \] \[ \vec{B} = 4\hat{i} - 2\hat{j} + 6\hat{k} \] ### Step 2: Calculate \(\vec{C} = \vec{A} + \vec{B}\) We will add the corresponding components of \(\vec{A}\) and \(\vec{B}\): \[ \vec{C} = \vec{A} + \vec{B} = (\hat{i} + 4\hat{i}) + (-2\hat{j} - 2\hat{j}) + (-3\hat{k} + 6\hat{k}) \] \[ \vec{C} = (1 + 4)\hat{i} + (-2 - 2)\hat{j} + (-3 + 6)\hat{k} \] \[ \vec{C} = 5\hat{i} - 4\hat{j} + 3\hat{k} \] ### Step 3: Find the components of \(\vec{C}\) From \(\vec{C}\), we have: - \(C_x = 5\) - \(C_y = -4\) - \(C_z = 3\) ### Step 4: Calculate the magnitude of \(\vec{C}\) The magnitude of \(\vec{C}\) is given by: \[ |\vec{C}| = \sqrt{C_x^2 + C_y^2 + C_z^2} \] Substituting the values: \[ |\vec{C}| = \sqrt{5^2 + (-4)^2 + 3^2} = \sqrt{25 + 16 + 9} = \sqrt{50} \] ### Step 5: Calculate the cosine of the angle \(\alpha\) with the x-axis The cosine of the angle \(\alpha\) made by \(\vec{C}\) with the x-axis is given by: \[ \cos \alpha = \frac{C_x}{|\vec{C}|} \] Substituting the values: \[ \cos \alpha = \frac{5}{\sqrt{50}} = \frac{5}{5\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Step 6: Find the angle \(\alpha\) To find \(\alpha\), we take the inverse cosine: \[ \alpha = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) \] This gives: \[ \alpha = 45^\circ \] ### Final Answer The angle made by \(\vec{C}\) with the x-axis is \(45^\circ\). ---

To solve the problem of finding the angle made by the vector \(\vec{C} = \vec{A} + \vec{B}\) with the x-axis, we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{A} = \hat{i} - 2\hat{j} - 3\hat{k} \] \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise UNSOLVED PROBLEMS |79 Videos
  • VECTORS SCALARS ELEMENTARY CALCULUS

    ICSE|Exercise FROM UNIT VECTORS COMPONENTS OF A VECTOR |6 Videos
  • UNITS

    ICSE|Exercise MODULE 3 (SELECTED PROBLEMS) |38 Videos
  • WAVES

    ICSE|Exercise From Musical Sound|10 Videos

Similar Questions

Explore conceptually related problems

Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Knowledge Check

  • If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

    A
    `(pi)/(2)`
    B
    `(pi)/(2)`
    C
    `(pi)/(6)`
    D
    `pi`
  • If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

    A
    8
    B
    `-8`
    C
    `8sqrt3`
    D
    None of these
  • If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

    A
    3
    B
    4
    C
    5
    D
    1
  • Similar Questions

    Explore conceptually related problems

    If vec(A) = 4hat(i) - 2hat(j) + 6hat(k) and B = hat(i) - 2hat(j) - 3hat(k) the angle which the vec(A) vec(B) makes with x-axis is :

    Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

    If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

    a. Calculate vec(r )=vec(a)-vec(b)+vec(c ) , where vec(a)=5hat(i)+4hat(j)-6hat(k) , vec(b)= -2hat(i)+2hat(j)+3hat(k) , and vec(c )= 4hat(i)+3hat(j)+2hat(k) . b. Calculate the angle between vec(r ) and the z -axis.