Home
Class 11
MATHS
If m(gtn) and n be two positive integers...

If `m(gtn)` and n be two positive integers then product n(n-1)(n-2)……….(n-m) in the factorial form is

A

`(n!)/((n-m+1)!)`

B

`(n!)/((n-m-1)!)`

C

`(n!)/((n+m-1)!)`

D

`(n!)/((n+m+1)!)`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    PATHFINDER|Exercise QUESTION BANK|223 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION AND LINEAR INEQUATIONS

    PATHFINDER|Exercise QUESTION BANK|14 Videos

Similar Questions

Explore conceptually related problems

If n and m (ltn) are two positive integers then n(n-1)(n-2)...(n-m) =

If n is a positive integer then .^(n)P_(n) =

Knowledge Check

  • If n is a positive integer , then (sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n) is -

    A
    an even positive integer
    B
    a rational number other than positive integers
    C
    an irrational number
    D
    an odd positive integer.
  • If n be a positive integer and P(n):4^(5n)-5^(4n) P(n) is divisible by -

    A
    399
    B
    401
    C
    397
    D
    430
  • The greatest positive integer divides (n+1)(n+2)..........(n+r) is

    A
    a) r
    B
    b) r!
    C
    c) (n+r)
    D
    d) (r+1)
  • Similar Questions

    Explore conceptually related problems

    If n be a positive integer greater than 1, prove that (frac(n+1)(2))^n > n

    Prove that 2^(n) gt n for all positive integers n.

    If i=sqrt-1 and n is a positive integer, then i^(n)+i^(n+1)+i^(n+3_ is equal to

    If m and n are positive integers and m ne n , show : int_(0)^(2pi)sinmxsinnxdx=0

    If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot