Home
Class 11
MATHS
If X = {4^n-3n-1: n in N} and Y = {9(n-1...

If X = {`4^n-3n-1: n in N}` and Y = {`9(n-1):n in N`} where N is the set of natural numbers then `X cup Y` is equal to

A

X

B

Y

C

N

D

Y-X

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    PATHFINDER|Exercise QUESTION BANK|23 Videos
  • SETS AND RELATIONS

    PATHFINDER|Exercise QUESTION BANK|56 Videos

Similar Questions

Explore conceptually related problems

If X={4^n-3n-1:n in NN}andY={9(n-1):n in NN} where NN is the set of natural numbers, then X cupY is equal to__

The mapping f:NrarrN given by f(n)=1+n^(2), n in N where N is the set of natural numbers, is

Knowledge Check

  • If aN={ax:x in N(natural number)} then 3N cap 7N is equal to

    A
    21N
    B
    10N
    C
    4N
    D
    14N
  • If n is a natural number, then (4^(n) -3n -1) is always divisible by-

    A
    9
    B
    18
    C
    27
    D
    21
  • If n is a natural number then (12 ^(n) + 25 ^(n-1)) is divisible by-

    A
    9
    B
    13
    C
    12
    D
    21
  • Similar Questions

    Explore conceptually related problems

    If A={1,2,3...} and N is the set of natural numbers, then check whether A and N are equal?

    If a N = { ax : x in N} then the set 4N cap 6N is

    If P={x:x=4n+1, nle5 and n in N }and Q ={3n: nle8 and n in N },find the set (P-Q).

    If n(X) = 4 and n(Y) = 8 . Find the maximum and minimum numbers of.elements of X cup Y

    P={(x,y):x,y in N and 3x+2y=15} is a relation on a set of natural number N find (i) P and (ii) P^(-1)