Home
Class 12
MATHS
The greatest value of n for which the de...

The greatest value of n for which the determinant
`Delta = |(1,1,1),(.^(n)C_(1),.^(n+3)C_(1),.^(n+6)C_(1)),(.^(n)C_(2),.^(n+3)C_(2),.^(n+6)C_(2))|` is divisible by `3^(n)`, is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the greatest value of \( n \) for which the determinant \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ \binom{n}{1} & \binom{n+3}{1} & \binom{n+6}{1} \\ \binom{n}{2} & \binom{n+3}{2} & \binom{n+6}{2} \end{vmatrix} \] is divisible by \( 3^n \). ### Step 1: Write the Binomial Coefficients First, we can express the binomial coefficients in terms of factorials: - \(\binom{n}{1} = n\) - \(\binom{n+3}{1} = n + 3\) - \(\binom{n+6}{1} = n + 6\) - \(\binom{n}{2} = \frac{n(n-1)}{2}\) - \(\binom{n+3}{2} = \frac{(n+3)(n+2)}{2}\) - \(\binom{n+6}{2} = \frac{(n+6)(n+5)}{2}\) Substituting these values into the determinant, we have: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ n & n + 3 & n + 6 \\ \frac{n(n-1)}{2} & \frac{(n+3)(n+2)}{2} & \frac{(n+6)(n+5)}{2} \end{vmatrix} \] ### Step 2: Factor Out Common Terms We can factor out \( \frac{1}{2} \) from the last row: \[ \Delta = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ n & n + 3 & n + 6 \\ n(n-1) & (n+3)(n+2) & (n+6)(n+5) \end{vmatrix} \] ### Step 3: Perform Row Operations Next, we can simplify the determinant by performing row operations. We can subtract the first column from the second and third columns: \[ \Delta = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ n & 3 & 6 \\ n(n-1) & (n+3)(n+2) - n(n-1) & (n+6)(n+5) - n(n-1) \end{vmatrix} \] Calculating the new entries in the third row: - For the second column: \[ (n+3)(n+2) - n(n-1) = n^2 + 5n + 6 - (n^2 - n) = 6n + 6 \] - For the third column: \[ (n+6)(n+5) - n(n-1) = n^2 + 11n + 30 - (n^2 - n) = 12n + 30 \] Thus, we have: \[ \Delta = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ n & 3 & 6 \\ n(n-1) & 6n + 6 & 12n + 30 \end{vmatrix} \] ### Step 4: Calculate the Determinant Now we can compute the determinant: \[ \Delta = \frac{1}{2} \left( 1 \cdot \begin{vmatrix} n & 3 \\ n(n-1) & 6n + 6 \end{vmatrix} - 1 \cdot \begin{vmatrix} n & 6 \\ n(n-1) & 12n + 30 \end{vmatrix} + 1 \cdot \begin{vmatrix} n & 3 \\ n & 6 \end{vmatrix} \right) \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} n & 3 \\ n(n-1) & 6n + 6 \end{vmatrix} = n(6n + 6) - 3n(n-1) = 6n^2 + 6n - 3n^2 + 3n = 3n^2 + 9n \) 2. \( \begin{vmatrix} n & 6 \\ n(n-1) & 12n + 30 \end{vmatrix} = n(12n + 30) - 6n(n-1) = 12n^2 + 30n - 6n^2 + 6n = 6n^2 + 36n \) 3. \( \begin{vmatrix} n & 3 \\ n & 6 \end{vmatrix} = n \cdot 6 - n \cdot 3 = 3n \) Putting it all together: \[ \Delta = \frac{1}{2} \left( (3n^2 + 9n) - (6n^2 + 36n) + 3n \right) = \frac{1}{2} \left( -3n^2 - 24n \right) = -\frac{3}{2}(n^2 + 8n) \] ### Step 5: Check Divisibility by \( 3^n \) Now we need to check when \( -\frac{3}{2}(n^2 + 8n) \) is divisible by \( 3^n \). The expression \( -\frac{3}{2}(n^2 + 8n) \) has a factor of \( 3 \). For it to be divisible by \( 3^n \), we need \( n^2 + 8n \) to be divisible by \( 3^{n-1} \). ### Step 6: Find the Maximum \( n \) We can analyze the expression \( n^2 + 8n \): - For \( n = 0 \): \( 0^2 + 8 \cdot 0 = 0 \) (divisible by \( 1 \)) - For \( n = 1 \): \( 1^2 + 8 \cdot 1 = 9 \) (divisible by \( 3 \)) - For \( n = 2 \): \( 2^2 + 8 \cdot 2 = 20 \) (not divisible by \( 9 \)) - For \( n = 3 \): \( 3^2 + 8 \cdot 3 = 51 \) (not divisible by \( 27 \)) Thus, the maximum \( n \) for which \( \Delta \) is divisible by \( 3^n \) is \( n = 3 \). ### Final Answer The greatest value of \( n \) for which the determinant \( \Delta \) is divisible by \( 3^n \) is: \[ \boxed{3} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

the value of the determinant |{:(.^(n)C_(r-1),,.^(n)C_(r),,(r+1)^(n+2)C_(r+1)),(.^(n)C_(r),,.^(n)C_(r+1),,(r+2)^(n+2)C_(r+2)),(.^(n)C_(r+1),,.^(n)C_(r+2),,(r+3)^(n+2)C_(r+3)):}| is

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

The value of determinant |[ ^n C_(r-1), ^n C_r, (r+1)^(n+2)C_(r+1)],[ ^n C_r, ^n C_(r+1),(r+2)^(n+2)C_(r+2)],[ ^n C_(r+1), ^n C_(r+2), (r+3)^(n+2)C_(r+3)]| is n^2+n-2 b. 0 c. ^n+3C_(r+3) d. ^n C_(r-1)+^n C_r+^n C_(r+1)

Prove that: .^(2)C_(2)+^(3)C_(2)+^(4)C_(2)+…..+^(n+1)C_(2)=1/6n(n+1)(n+2)

Prove the equality 1^(2)+2^(2)+3^(2) . . .+n^(2)=.^(n+1)C_(2)+2(.^(n)C_(2)+.^(n-1)C_(2) . . .+.^(2)C_(2)) .

if n>=2, ""^(n+1)C_(2)+2(""^(2)C_(2)+""^(3)C_(2)+""^(4)C_(2)+....+""^(n)C_(2)) Value is:-

Prove that: .^(2)C_(2)+^(3)C_(2)+^(4)C_(2)+…..+^(n+1)C_(2)=1/6n(n+1)(n+2)