Home
Class 12
MATHS
Find the sum of possible real values of ...

Find the sum of possible real values of `x` for which the sixth term of `(3^(log_3 sqrt(9^|x-2|))+7^(1/5 log_7 (3^(|x-2|-9))))^7` equals 567.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of possible real values of \( x \) for which the sixth term of the expression \[ (3^{\log_3 \sqrt{9^{|x-2|}}} + 7^{\frac{1}{5} \log_7 (3^{|x-2|-9})})^7 \] equals 567. ### Step-by-Step Solution: 1. **Simplify the Expression**: - Start with \( 3^{\log_3 \sqrt{9^{|x-2|}}} \): \[ \sqrt{9^{|x-2|}} = 9^{\frac{|x-2|}{2}} = (3^2)^{\frac{|x-2|}{2}} = 3^{|x-2|} \] Thus, \( 3^{\log_3 \sqrt{9^{|x-2|}}} = 3^{|x-2|} \). - Now simplify \( 7^{\frac{1}{5} \log_7 (3^{|x-2|-9})} \): \[ 7^{\frac{1}{5} \log_7 (3^{|x-2|-9})} = (3^{|x-2|-9})^{\frac{1}{5}} = 3^{\frac{|x-2|-9}{5}} \] - Combine the two parts: \[ 3^{|x-2|} + 3^{\frac{|x-2|-9}{5}} \] 2. **Set Up the Sixth Term**: - The expression becomes: \[ (3^{|x-2|} + 3^{\frac{|x-2|-9}{5}})^7 \] - We need to find the sixth term of this binomial expansion, which corresponds to \( T_6 \) (where \( r = 5 \)): \[ T_6 = \binom{7}{5} (3^{|x-2|})^2 \left(3^{\frac{|x-2|-9}{5}}\right)^5 \] 3. **Calculate the Coefficient**: - The binomial coefficient: \[ \binom{7}{5} = \frac{7!}{5! \cdot 2!} = 21 \] 4. **Combine the Terms**: - The term becomes: \[ 21 \cdot 3^{2|x-2|} \cdot 3^{\frac{5(|x-2|-9)}{5}} = 21 \cdot 3^{2|x-2|} \cdot 3^{|x-2|-9} = 21 \cdot 3^{3|x-2|-9} \] 5. **Set the Equation**: - Set this equal to 567: \[ 21 \cdot 3^{3|x-2|-9} = 567 \] - Divide both sides by 21: \[ 3^{3|x-2|-9} = \frac{567}{21} = 27 \] - Since \( 27 = 3^3 \): \[ 3^{3|x-2|-9} = 3^3 \] 6. **Equate the Exponents**: - Thus, we have: \[ 3|x-2| - 9 = 3 \] - Solving for \( |x-2| \): \[ 3|x-2| = 12 \implies |x-2| = 4 \] 7. **Find Possible Values of \( x \)**: - This gives us two cases: \[ x - 2 = 4 \implies x = 6 \] \[ x - 2 = -4 \implies x = -2 \] 8. **Sum of Possible Values**: - The possible values of \( x \) are \( 6 \) and \( -2 \). - The sum is: \[ 6 + (-2) = 4 \] ### Final Answer: The sum of possible real values of \( x \) is \( \boxed{4} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

For what value of x is the ninth term in the expansion of (3^(log_3 sqrt(25^(x-1) +7)) + 3^(-1/8 log_3 (5^(x-1) +1)))^10 is equal to 180

the value of x , for which the 6th term in the expansions of [2^(log_2) (sqrt(9^((x-1)+7)))+1/(2^(1/5)(log)_2(3^(x-1)+1))]^7i s84 , is equal to a. 4 b. 3 c. 2 d. 1

The value of x for which the sixth term in the expansion of [2^(log)2sqrt(9^(x-1)+7)+1/(2^(1/5)(log)_2(3^((x-1)+1)))]^7 is 84 is a. 4 b. 1or2 c. 0or1 d. 3

Find the number or real values of x satisfying the equation 9^(2log_(9)x)+4x+3=0 .

The largest value of x for which the fourth tem in the expansion (5^((2/5)(log)_5sqrt(4^(x)+44))+1/(5^(log_5) (2^((x-1)+7))^(1/3)))^8 is 336 is.

Find the sum and product of all possible values of x which makes the following statement true. log_(6)54+log_x16=log_sqrt2x-log_36(4/9) .

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

Number of integral values of x in the domain of function f (x)= sqrt(ln(|ln|x||)) + sqrt(7|x|-(|x|)^2-10) is equal to

Find the sum of the squares of all the real solution of the equation 2log_((2+sqrt3)) (sqrt(x^2+1)+x)+log_((2-sqrt3)) (sqrt(x^2+1)-x)=3

Find the sum of the series 1-3x+5x^2-7x^3+ ton terms.