Home
Class 12
MATHS
Let M denote antilog ""(32)0.6 and N den...

Let M denote antilog `""_(32)`0.6 and N denote the value of `49^((1-log_(7)2))+5^(-log_(5)4)`. Then M.N is :

A

100

B

400

C

50

D

200

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will compute the values of \( M \) and \( N \) step by step and then find \( M \cdot N \). ### Step 1: Calculate \( M \) We are given: \[ M = \text{antilog}_{32}(0.6) \] Using the property of antilogarithm, we can express this as: \[ M = 32^{0.6} \] Next, we can rewrite \( 32 \) as a power of \( 2 \): \[ 32 = 2^5 \] Thus, \[ M = (2^5)^{0.6} = 2^{5 \cdot 0.6} = 2^{3} = 8 \] ### Step 2: Calculate \( N \) We are given: \[ N = 49^{(1 - \log_{7}(2))} + 5^{(-\log_{5}(4))} \] First, we can simplify \( 49 \): \[ 49 = 7^2 \] So, \[ N = (7^2)^{(1 - \log_{7}(2))} + 5^{(-\log_{5}(4))} \] Using the property of exponents: \[ N = 7^{2(1 - \log_{7}(2))} + 5^{-\log_{5}(4)} \] Now, simplify \( 7^{2(1 - \log_{7}(2))} \): \[ N = 7^{2 - 2\log_{7}(2)} = 7^2 \cdot 7^{-2\log_{7}(2)} = 49 \cdot 2^{-2} = 49 \cdot \frac{1}{4} = \frac{49}{4} \] Next, simplify \( 5^{-\log_{5}(4)} \): \[ 5^{-\log_{5}(4)} = \frac{1}{5^{\log_{5}(4)}} = \frac{1}{4} \] Now, combine both parts: \[ N = \frac{49}{4} + \frac{1}{4} = \frac{49 + 1}{4} = \frac{50}{4} = \frac{25}{2} \] ### Step 3: Calculate \( M \cdot N \) Now that we have both \( M \) and \( N \): \[ M \cdot N = 8 \cdot \frac{25}{2} \] Calculating this gives: \[ M \cdot N = 4 \cdot 25 = 100 \] ### Final Answer Thus, the value of \( M \cdot N \) is: \[ \boxed{100} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of 49^((1-log_7(2)))+5^(-log_5(4) is

Find the value of (1/49)^(1+log_(7)2) + 5^(-log_((1//5))(7) .

Find the value of (1/49)^(1+log_(7)2) + 5^(-log_((1//5))(7) .

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

Let L denote antilog_32 0.6 and M denote the number of positive integers which have the characteristic 4, when the base of log is 5, and N denote the value of 49^((1-(log)_7 2))+5^(-(log)_5 4.) Find the value of (L M)/Ndot

Find the value of (1/(49))^(1+(log)_7 2)+5^(-1(log)_((1/5))(7))

If log_(4)m=1.5 , then find the value of m.

Let 1 le x le 256 and M be the maximum value of (log_(2)x)^(4)+16(log_(2)x)^(2)log_(2)((16)/(x)) . The sum of the digits of M is :

Let S denotes the antilog of 0.5 to the base 256 and K denotes the number of digits in 6^(10) (given log_(10)2=0.301 , log_(10)3=0.477 ) and G denotes the number of positive integers, which have the characteristic 2, when the base of logarithm is 3. The value of SKG is

Find the value of 49^A+5^B w h e r e\ A=1-(log)_7 2\ &\ B=-(log)_5 4.