Home
Class 12
MATHS
A point P moves such that the sum of the...

A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola xy = 16 is equal to the sum of ordinates of feet of normals . The locus of P is a curve C.
The equation of the curve C is

A

`x^(2)=4y`

B

`x^(2)=16y`

C

`x^(2)=12y`

D

`y^(2)=8x`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|33 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos

Similar Questions

Explore conceptually related problems

A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola xy=16 is equal to the sum of ordinates of feet of normals. The locus of P is a curve C

A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola xy = 16 is equal to the sum of ordinates of feet of normals . The locus of P is a curve C. If the tangent to the curve C cuts the corrdinate axes at A and B, then the locus of the middle point of AB is

A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola xy=4 is equal to the sum of the ordinates of feet of normals. The locus of P is a curve C. Q.If the tangent to the curve C cuts the coordinate axes at A and B, then , the locus of the middle point of AB is

A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola xy=4 is equal to the sum of the ordinates of feet of normals. The locus of P is a curve C. Q. The area of the equilateral triangle inscribed in the curve C having one vertex as the vertex of curve C is

Three normals are drawn from the point (7, 14) to the parabola x^2-8x-16 y=0 . Find the coordinates of the feet of the normals.

Three normals are drawn from the point (14,7) to the curve y^2-16x-8y=0 . Find the coordinates of the feet of the normals.

Prove that the feet of the normals drawn from the point (h, k) to the parabola y^2 -4ax lie on the curve xy-(h-2a)y-2ak=0 .

A point P is such that the sum of the squares of its distances from the two axes of co-ordinates is equal to the square of its distance from the line x-y=1 . Find the equation of the locus of P.

The algebraic sum of the ordinates of the feet of 3 normals drawn to the parabola y^2=4ax from a given point is 0.

If the sum of the slopes of the normal from a point P to the hyperbola x y=c^2 is equal to lambda(lambda in R^+) , then the locus of point P is (a) x^2=lambdac^2 (b) y^2=lambdac^2 (c) x y=lambdac^2 (d) none of these