Home
Class 12
MATHS
The value of (1+tan\ (3pi)/8*tan\ pi/8)+...

The value of `(1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+(1+tan\ (7pi)/8*tan\ (5pi)/8)+(1+tan\ (9pi)/8* tan\ (7pi)/8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ (1 + \tan(3\pi/8) \tan(\pi/8)) + (1 + \tan(5\pi/8) \tan(3\pi/8)) + (1 + \tan(7\pi/8) \tan(5\pi/8)) + (1 + \tan(9\pi/8) \tan(7\pi/8)), \] we can simplify each term using the identity for the tangent of the difference of two angles. ### Step 1: Rewrite each term We can use the identity: \[ 1 + \tan A \tan B = \frac{\tan(A - B)}{\tan(A - B)} + 1 = \frac{\tan(A - B) + 1}{\tan(A - B)}. \] Thus, we rewrite each term as follows: 1. \(1 + \tan(3\pi/8) \tan(\pi/8)\) 2. \(1 + \tan(5\pi/8) \tan(3\pi/8)\) 3. \(1 + \tan(7\pi/8) \tan(5\pi/8)\) 4. \(1 + \tan(9\pi/8) \tan(7\pi/8)\) ### Step 2: Use the tangent subtraction identity Using the identity \( \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \), we can simplify each term. For example, for the first term: \[ 1 + \tan(3\pi/8) \tan(\pi/8) = \frac{\tan(3\pi/8) - \tan(\pi/8)}{\tan(3\pi/8) - \tan(\pi/8)} + 1 = \tan(3\pi/8) - \tan(\pi/8) + 1. \] ### Step 3: Combine the terms Now we can combine all the terms: \[ (\tan(3\pi/8) - \tan(\pi/8) + 1) + (\tan(5\pi/8) - \tan(3\pi/8) + 1) + (\tan(7\pi/8) - \tan(5\pi/8) + 1) + (\tan(9\pi/8) - \tan(7\pi/8) + 1). \] Notice that the \(\tan\) terms will cancel out: \[ \tan(3\pi/8) - \tan(\pi/8) + \tan(5\pi/8) - \tan(3\pi/8) + \tan(7\pi/8) - \tan(5\pi/8) + \tan(9\pi/8) - \tan(7\pi/8). \] ### Step 4: Simplify further The terms cancel out, leading to: \[ \tan(9\pi/8) - \tan(\pi/8). \] ### Step 5: Evaluate \(\tan(9\pi/8)\) Since \(9\pi/8\) is in the third quadrant, we have: \[ \tan(9\pi/8) = \tan(\pi + \pi/8) = \tan(\pi/8). \] Thus, \[ \tan(9\pi/8) - \tan(\pi/8) = \tan(\pi/8) - \tan(\pi/8) = 0. \] ### Final Answer The value of the entire expression is \[ \boxed{0}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

The value of tan((5pi)/12)-tan(pi/12) is

The value of : tan^(-1) ( tan ""(9pi)/(8) ) is

Knowledge Check

  • Evaluate : tan ""(pi )/(12) .tan ""( pi )/(16) .tan ""(5pi )/(12) .tan ""( 7pi )/(16)

    A
    `-1`
    B
    ` 1`
    C
    `0`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Find the value of tan. pi/20tan. (3pi)/20tan. (5pi)/20tan. (7pi)/20tan. (9pi)/20 .

    Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)

    Prove that : tan\ pi/7*tan\ (2pi)/7*tan\ (3pi)/7=sqrt(7)

    Find the value of tan^(-1)(tan((3pi)/4))

    Find the value of tan^(-1)(tan((3pi)/4))

    Show that: (tan^2\ pi/7+tan^2\ (2pi)/7+tan^2\ (3pi)/7)(cot^2\ pi/7 +cot^2\ (2pi)/7+ cot^2\ (3pi)/7)=105

    The value of the expression tan. (pi)/(7)+ 2 tan. (2pi)/(7)+ 4 tan . (4pi)/(7)+ 8 cot. (8pi)/(7) is equal to