Home
Class 12
MATHS
If r(1), r(2), r(3) are radii of the esc...

If `r_(1), r_(2), r_(3)` are radii of the escribed circles of a triangle ABC and r it the radius of its incircle, then the root(s) of the equation `x^(2)-r(r_(1)r_(2)+r_(2)r_(3)+r_(3)r_(1))x+(r_(1)r_(2)r_(3)-1)=0` is/are :

A

`r_(1)`

B

`r_(2)+r_(3)`

C

1

D

`r_(1)r_(2)r_(3)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the roots of the quadratic equation: \[ x^2 - r(r_1 r_2 + r_2 r_3 + r_3 r_1)x + (r_1 r_2 r_3 - 1) = 0 \] where \( r_1, r_2, r_3 \) are the radii of the escribed circles of triangle \( ABC \) and \( r \) is the radius of its incircle. ### Step 1: Identify the components of the equation The equation is in the standard quadratic form \( ax^2 + bx + c = 0 \), where: - \( a = 1 \) - \( b = -r(r_1 r_2 + r_2 r_3 + r_3 r_1) \) - \( c = r_1 r_2 r_3 - 1 \) ### Step 2: Use the quadratic formula The roots of a quadratic equation can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values of \( a, b, \) and \( c \): \[ x = \frac{r(r_1 r_2 + r_2 r_3 + r_3 r_1) \pm \sqrt{(r(r_1 r_2 + r_2 r_3 + r_3 r_1))^2 - 4(1)(r_1 r_2 r_3 - 1)}}{2} \] ### Step 3: Simplify the expression under the square root Let’s denote \( P = r_1 r_2 r_3 \). Then we have: \[ x = \frac{r(r_1 r_2 + r_2 r_3 + r_3 r_1) \pm \sqrt{(r(r_1 r_2 + r_2 r_3 + r_3 r_1))^2 - 4(P - 1)}}{2} \] ### Step 4: Check for specific roots We can check if \( x = 1 \) is a root of the equation: Substituting \( x = 1 \): \[ 1^2 - r(r_1 r_2 + r_2 r_3 + r_3 r_1)(1) + (r_1 r_2 r_3 - 1) = 0 \] This simplifies to: \[ 1 - r(r_1 r_2 + r_2 r_3 + r_3 r_1) + (r_1 r_2 r_3 - 1) = 0 \] Which can be rearranged to: \[ r_1 r_2 r_3 - r(r_1 r_2 + r_2 r_3 + r_3 r_1) = 0 \] This means that \( x = 1 \) is indeed a root. ### Step 5: Find the second root Let the second root be denoted as \( \alpha \). The sum of the roots of the quadratic equation is given by: \[ 1 + \alpha = r(r_1 r_2 + r_2 r_3 + r_3 r_1) \] Thus, we can express \( \alpha \) as: \[ \alpha = r(r_1 r_2 + r_2 r_3 + r_3 r_1) - 1 \] ### Step 6: Final roots The roots of the quadratic equation are: 1. \( x = 1 \) 2. \( x = r(r_1 r_2 + r_2 r_3 + r_3 r_1) - 1 \) ### Conclusion The roots of the given quadratic equation are: \[ x = 1 \quad \text{and} \quad x = r_1 r_2 r_3 - 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|11 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

(r_(2)+r_(3))sqrt((r r_(1))/(r_(2)r_(3)))=

Show that (r_(1)+ r _(2))(r _(2)+ r _(3)) (r_(3)+r_(1))=4Rs^(2)

If r_(1), r_(2), r_(3) in triangle be in H.P., then the sides are :

Prove that r_(1) r_(2) + r_(2) r_(3) + r_(3) r_(1) = (1)/(4) (a + b + c)^(2)

Prove the questions a(r r_(1) + r_(2)r_(3)) = b(r r_(2) + r_(3) r_(1)) = c (r r_(3) + r_(1) r_(2))

Show that that the radii of the three escribed circles of a triangle are the roots of the equation x^3-x^2(4R+r)+xs^2-rs^2=0

Statement I In a Delta ABC, if a lt b lt c and r is inradius and r_(1) , r_(2) , r_(3) are the exradii opposite to angle A,B,C respectively, then r lt r_(1) lt r_(2) lt r_(3). Statement II For, DeltaABC r_(1)r_(2)+r_(2)r_(3)+r_(3)r_(1)=(r_(1)r_(2)r_(3))/(r)

(r_3+r_1)(r_3+r_2)sinC=2r_3sqrt(r_2r_3+r_3r_1+r_1r_2)

In a triangle ABC , if 2R + r = r_(1) , then

Let ABC be a triangle with incentre I and inradius r. Let D, E, F be the feet of the perpendiculars from I to the sides BC, CA and AB, respectively, If r_(2)" and "r_(3) are the radii of circles inscribed in the quadrilaterls AFIE, BDIF and CEID respectively, then prove that r_(1)/(r-r_(1))+r_(2)/(r-r_(2))+r_(3)/(r-r_(3))=(r_(1)r_(2)r_(3))/((r-r_(1))(r-r_(2))(r-r_(3)))