Home
Class 12
MATHS
Sum the series : tan^(- 1)(4/(1+3.4))+ta...

Sum the series : `tan^(- 1)(4/(1+3.4))+tan^(- 1)(6/(1+8.9))+tan^(- 1)(8/(1+15.16))+............oo` is :

A

`cot^(-1)(2)`

B

`tan^(-1)(2)`

C

`(pi)/(2)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series given by \[ S = \tan^{-1}\left(\frac{4}{1 + 3 \cdot 4}\right) + \tan^{-1}\left(\frac{6}{1 + 8 \cdot 9}\right) + \tan^{-1}\left(\frac{8}{1 + 15 \cdot 16}\right) + \ldots \] we will first identify the general term of the series. ### Step 1: Identify the General Term The general term can be expressed as: \[ T_r = \tan^{-1}\left(\frac{2r + 2}{1 + (r + 1)(r + 2)}\right) \] where \( r \) starts from 1 and goes to infinity. ### Step 2: Simplify the Denominator The denominator can be simplified as follows: \[ 1 + (r + 1)(r + 2) = 1 + (r^2 + 3r + 2) = r^2 + 3r + 3 \] Thus, we can rewrite the general term as: \[ T_r = \tan^{-1}\left(\frac{2r + 2}{r^2 + 3r + 3}\right) \] ### Step 3: Rewrite the General Term Now, we can express \( T_r \) in a more manageable form: \[ T_r = \tan^{-1}\left(\frac{2(r + 1)}{(r + 1)(r + 3)}\right) = \tan^{-1}\left(\frac{2}{r + 3}\right) \] ### Step 4: Sum the Series The series can now be rewritten as: \[ S = \sum_{r=1}^{\infty} \left( \tan^{-1}\left(\frac{2}{r + 3}\right) \right) \] ### Step 5: Use the Inverse Tangent Identity Using the identity for the difference of inverse tangents, we can express the series as: \[ S = \tan^{-1}(2) - \tan^{-1}(0) \] ### Step 6: Evaluate the Limit As \( r \to \infty \), \( \tan^{-1}(0) \) approaches 0. Thus, the sum converges to: \[ S = \tan^{-1}(2) + \tan^{-1}(\infty) - \tan^{-1}(2) \] ### Step 7: Final Result The final result for the sum of the series is: \[ S = \frac{\pi}{2} - \tan^{-1}(2) \] ### Conclusion Thus, the sum of the series is: \[ \text{Sum} = \cot^{-1}(2) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is:

tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

4tan^(- 1)(1/5)=tan^(- 1)(1/70)-tan^(- 1)(1/99)+pi/4

4tan^(- 1)(1/5)=tan^(- 1)(1/70)+tan^(- 1)(1/99)+pi/4

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Sum the following series to infinity : tan^(-1)(1/(1+1+1^2))+tan^(-1)(1/(1+2+2^2))+tan^(-1)(1/(1+3+3^2))+.................

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)