Home
Class 12
MATHS
Let f be a differentiable function satis...

Let f be a differentiable function satisfying the condition `f ((x)/(y)) = (f(x))/(f (y)) (y ne 0, f (y) ne 0) AA x, y in R and f '(1) =2.` If the smaller area enclosed by `y = f(x) , x ^(2)+y^(2) =2` is A, then findal [A], where [.] represents the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning presented in the video transcript. ### Step 1: Determine the function \( f(x) \) We are given the functional equation: \[ f\left(\frac{x}{y}\right) = \frac{f(x)}{f(y)} \quad (y \neq 0, f(y) \neq 0) \] Assuming \( f(x) = x^n \) for some \( n \), we can substitute this into the functional equation: \[ f\left(\frac{x}{y}\right) = \left(\frac{x}{y}\right)^n = \frac{x^n}{y^n} = \frac{f(x)}{f(y)} \] This satisfies the functional equation for any \( n \). ### Step 2: Find \( n \) using the derivative condition We are given that \( f'(1) = 2 \). First, we compute the derivative of \( f(x) = x^n \): \[ f'(x) = n x^{n-1} \] Substituting \( x = 1 \): \[ f'(1) = n \cdot 1^{n-1} = n \] Setting this equal to 2 gives us: \[ n = 2 \] Thus, we have determined that \( f(x) = x^2 \). ### Step 3: Find the area enclosed by \( y = f(x) \) and \( x^2 + y^2 = 2 \) We need to find the area enclosed by the curve \( y = x^2 \) and the circle \( x^2 + y^2 = 2 \). 1. **Find the intersection points**: Set \( y = x^2 \) in the equation of the circle: \[ x^2 + (x^2)^2 = 2 \implies x^2 + x^4 = 2 \implies x^4 + x^2 - 2 = 0 \] Let \( z = x^2 \): \[ z^2 + z - 2 = 0 \] Using the quadratic formula: \[ z = \frac{-1 \pm \sqrt{1 + 8}}{2} = \frac{-1 \pm 3}{2} \] This gives \( z = 1 \) or \( z = -2 \) (discarding the negative root). Thus, \( x^2 = 1 \) implies \( x = 1 \) or \( x = -1 \). The corresponding \( y \)-values are \( y = 1 \) at \( x = 1 \) and \( y = 1 \) at \( x = -1 \). 2. **Set up the area integral**: The area \( A \) can be calculated by integrating the difference between the upper function (the circle) and the lower function (the parabola) from \( x = -1 \) to \( x = 1 \): \[ A = 2 \int_0^1 \left( \sqrt{2 - x^2} - x^2 \right) dx \] ### Step 4: Calculate the integral Using the property of integrals: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C \] For our case, \( a = \sqrt{2} \): \[ A = 2 \left[ \int_0^1 \sqrt{2 - x^2} \, dx - \int_0^1 x^2 \, dx \right] \] Calculating the first integral: \[ \int_0^1 \sqrt{2 - x^2} \, dx = \left[ \frac{x}{2} \sqrt{2 - x^2} + \frac{2}{2} \sin^{-1}\left(\frac{x}{\sqrt{2}}\right) \right]_0^1 \] Evaluating at the limits: \[ = \left( \frac{1}{2} \sqrt{1} + 1 \cdot \frac{\pi}{4} \right) - \left( 0 + 0 \right) = \frac{1}{2} + \frac{\pi}{4} \] Calculating the second integral: \[ \int_0^1 x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^1 = \frac{1}{3} \] Thus, the area \( A \) becomes: \[ A = 2 \left( \left( \frac{1}{2} + \frac{\pi}{4} \right) - \frac{1}{3} \right) \] ### Step 5: Final calculation Combining terms: \[ A = 2 \left( \frac{1}{2} - \frac{1}{3} + \frac{\pi}{4} \right) = 2 \left( \frac{3}{6} - \frac{2}{6} + \frac{\pi}{4} \right) = 2 \left( \frac{1}{6} + \frac{\pi}{4} \right) \] Calculating: \[ A = \frac{1}{3} + \frac{\pi}{2} \] ### Step 6: Find the greatest integer function Now, we need to evaluate: \[ \left\lfloor A \right\rfloor = \left\lfloor \frac{1}{3} + \frac{\pi}{2} \right\rfloor \] Using \( \pi \approx 3.14 \): \[ \frac{\pi}{2} \approx 1.57 \implies A \approx \frac{1}{3} + 1.57 \approx 1.9 \] Thus, the greatest integer function gives: \[ \left\lfloor 1.9 \right\rfloor = 1 \] ### Final Answer Therefore, the final answer is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • AREA UNDER CURVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|1 Videos
  • APPLICATION OF DERIVATIVES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • BIONMIAL THEOREM

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Subjective Type Problems|16 Videos

Similar Questions

Explore conceptually related problems

Let f be a differential function satisfying the condition. f((x)/(y))=(f(x))/(f(y))"for all "x,y ( ne 0) in R"and f(y) ne 0 If f'(1)=2 , then f'(x) is equal to

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

Let 'f' be a fifferentiable real valued function satisfying f (x+2y) =f (x) +f (2y) + 6xy (x+2y) AA x, y in R. Then f ' (0), f" (1), f'(2)….. are in

Find function f(x) which is differentiable and satisfy the relation f(x+y)=f(x)+f(y)+(e^(x)-1)(e^(y)-1)AA x, y in R, and f'(0)=2.

Find function f(x) which is differentiable and satisfy the relation f(x+y)=f(x)+f(y)+(e^(x)-1)(e^(y)-1)AA x, y in R, and f'(0)=2.

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .