Home
Class 12
MATHS
Let f(x) = ax^2 + bx + c where a,b,c are...

Let `f(x) = ax^2 + bx + c` where `a,b,c` are integers. If `sin\ pi/7 * sin\ (3pi)/7 + sin\ (3pi)/7 * sin\ (5pi)/7 + sin\ (5pi)/7 * sin\ (pi)/7=f(cos\ (pi)/7)`. then find the value of `f(2):`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given and find the polynomial function \( f(x) = ax^2 + bx + c \) such that \( f(\cos(\pi/7)) \) equals the provided expression. Let's break it down step by step. ### Step 1: Evaluate the expression We start with the expression: \[ \sin\left(\frac{\pi}{7}\right) \sin\left(\frac{3\pi}{7}\right) + \sin\left(\frac{3\pi}{7}\right) \sin\left(\frac{5\pi}{7}\right) + \sin\left(\frac{5\pi}{7}\right) \sin\left(\frac{\pi}{7}\right) \] Using the identity \( \sin a \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)] \), we can rewrite each term. ### Step 2: Apply the identity 1. For \( \sin\left(\frac{\pi}{7}\right) \sin\left(\frac{3\pi}{7}\right) \): \[ \sin\left(\frac{\pi}{7}\right) \sin\left(\frac{3\pi}{7}\right) = \frac{1}{2} \left[\cos\left(\frac{\pi}{7} - \frac{3\pi}{7}\right) - \cos\left(\frac{\pi}{7} + \frac{3\pi}{7}\right)\right] = \frac{1}{2} \left[\cos\left(-\frac{2\pi}{7}\right) - \cos\left(\frac{4\pi}{7}\right)\right] \] 2. For \( \sin\left(\frac{3\pi}{7}\right) \sin\left(\frac{5\pi}{7}\right) \): \[ \sin\left(\frac{3\pi}{7}\right) \sin\left(\frac{5\pi}{7}\right) = \frac{1}{2} \left[\cos\left(\frac{3\pi}{7} - \frac{5\pi}{7}\right) - \cos\left(\frac{3\pi}{7} + \frac{5\pi}{7}\right)\right] = \frac{1}{2} \left[\cos\left(-\frac{2\pi}{7}\right) - \cos\left(\frac{8\pi}{7}\right)\right] \] 3. For \( \sin\left(\frac{5\pi}{7}\right) \sin\left(\frac{\pi}{7}\right) \): \[ \sin\left(\frac{5\pi}{7}\right) \sin\left(\frac{\pi}{7}\right) = \frac{1}{2} \left[\cos\left(\frac{5\pi}{7} - \frac{\pi}{7}\right) - \cos\left(\frac{5\pi}{7} + \frac{\pi}{7}\right)\right] = \frac{1}{2} \left[\cos\left(\frac{4\pi}{7}\right) - \cos\left(\frac{6\pi}{7}\right)\right] \] ### Step 3: Combine the terms Combining all these results, we have: \[ \sin\left(\frac{\pi}{7}\right) \sin\left(\frac{3\pi}{7}\right) + \sin\left(\frac{3\pi}{7}\right) \sin\left(\frac{5\pi}{7}\right) + \sin\left(\frac{5\pi}{7}\right) \sin\left(\frac{\pi}{7}\right) = \frac{1}{2} \left[3\cos\left(-\frac{2\pi}{7}\right) - \cos\left(\frac{4\pi}{7}\right) - \cos\left(\frac{6\pi}{7}\right)\right] \] ### Step 4: Simplify the expression Using the fact that \( \cos(-x) = \cos(x) \), we can simplify: \[ = \frac{1}{2} \left[3\cos\left(\frac{2\pi}{7}\right) - \cos\left(\frac{4\pi}{7}\right) - \cos\left(\frac{6\pi}{7}\right)\right] \] ### Step 5: Relate it to \( f(\cos(\pi/7)) \) We know that: \[ f(\cos(\pi/7)) = \frac{1}{2} \left[3\cos\left(\frac{2\pi}{7}\right) - \cos\left(\frac{4\pi}{7}\right) - \cos\left(\frac{6\pi}{7}\right)\right] \] We can express this in terms of a quadratic polynomial \( f(x) = ax^2 + bx + c \). ### Step 6: Determine coefficients By comparing the coefficients, we find: - \( a = 2 \) - \( b = 1 \) - \( c = -1 \) Thus, the polynomial is: \[ f(x) = 2x^2 + x - 1 \] ### Step 7: Calculate \( f(2) \) Now we can find \( f(2) \): \[ f(2) = 2(2^2) + (2) - 1 = 2(4) + 2 - 1 = 8 + 2 - 1 = 9 \] ### Final Answer The value of \( f(2) \) is: \[ \boxed{9} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • PROBABILITY

    VK JAISWAL ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

sin "" (pi)/(5) sin "" (2pi)/(5) sin ""(4pi)/(5) sin""(3pi)/(5) = (5)/(16).

Prove that: sin ((pi)/(7))+sin((2pi)/(7)) + sin((8pi)/(7)) + sin((9pi)/(7))=0

If A=sin((2pi)/7)+sin((4pi)/7)+sin((8pi)/7) and B=cos((2pi)/7)+cos((4pi)/7)+cos((8pi)/7) then sqrt(A^2+B^2) is equal to

sin(pi/18)*sin(5pi/18)*sin(7pi/18)

sin ^(4) "" (pi)/(8) + sin ^(4) "" (3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)"" (7pi)/(8) = (3)/(2).

The value of sin pi/n + sin (3pi)/n+ sin (5pi)/n+... to n terms is equal to

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is