Home
Class 11
PHYSICS
vec(A)=2hat(i)+4hat(j)+4hat(k) and vec(B...

`vec(A)=2hat(i)+4hat(j)+4hat(k)` and `vec(B)=4hat(i)+2hat(j)-4hat(k)` are two vectors. Find the angles between them.

Text Solution

AI Generated Solution

To find the angle between the vectors \(\vec{A} = 2\hat{i} + 4\hat{j} + 4\hat{k}\) and \(\vec{B} = 4\hat{i} + 2\hat{j} - 4\hat{k}\), we will use the formula for the dot product of two vectors: \[ \vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos(\theta) \] where \(\theta\) is the angle between the vectors. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Subjective|28 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Single Correct|51 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.1|19 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS ENGLISH|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

a. Calculate vec(r )=vec(a)-vec(b)+vec(c ) , where vec(a)=5hat(i)+4hat(j)-6hat(k) , vec(b)= -2hat(i)+2hat(j)+3hat(k) , and vec(c )= 4hat(i)+3hat(j)+2hat(k) . b. Calculate the angle between vec(r ) and the z -axis.

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?