Home
Class 12
PHYSICS
The vectors from origin to the points A ...

The vectors from origin to the points A and B are `vecA=3hati-6hatj+2hatk` and `vecB=2hati+hatj+2hatk` respectively. The area of triangle `OAB` be

A

`(5)/(2)sqrt(17)` sq. units

B

`(2)/(5)sqrt(17)` sq. units

C

`(3)/(5)sqrt(17)` sq. units

D

`(5)/(3)sqrt(17)` sq. units

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle OAB formed by the vectors \(\vec{A}\) and \(\vec{B}\), we can use the formula for the area of a triangle given by two vectors originating from the same point. The area \(A\) of triangle OAB can be calculated using the formula: \[ A = \frac{1}{2} |\vec{A} \times \vec{B}| \] ### Step 1: Define the vectors We are given: \[ \vec{A} = 3\hat{i} - 6\hat{j} + 2\hat{k} \] \[ \vec{B} = 2\hat{i} + \hat{j} + 2\hat{k} \] ### Step 2: Calculate the cross product \(\vec{A} \times \vec{B}\) To find the cross product, we will use the determinant of a matrix formed by the unit vectors and the components of \(\vec{A}\) and \(\vec{B}\): \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -6 & 2 \\ 2 & 1 & 2 \end{vmatrix} \] Calculating this determinant, we expand it as follows: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} -6 & 2 \\ 1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2 \\ 2 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -6 \\ 2 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -6 & 2 \\ 1 & 2 \end{vmatrix} = (-6)(2) - (2)(1) = -12 - 2 = -14\) 2. \(\begin{vmatrix} 3 & 2 \\ 2 & 2 \end{vmatrix} = (3)(2) - (2)(2) = 6 - 4 = 2\) 3. \(\begin{vmatrix} 3 & -6 \\ 2 & 1 \end{vmatrix} = (3)(1) - (-6)(2) = 3 + 12 = 15\) Putting it all together: \[ \vec{A} \times \vec{B} = -14\hat{i} - 2(-2)\hat{j} + 15\hat{k} = -14\hat{i} - 2\hat{j} + 15\hat{k} \] ### Step 3: Find the magnitude of \(\vec{A} \times \vec{B}\) Now we calculate the magnitude of the cross product: \[ |\vec{A} \times \vec{B}| = \sqrt{(-14)^2 + (-2)^2 + (15)^2} \] Calculating each term: \[ = \sqrt{196 + 4 + 225} = \sqrt{425} = 5\sqrt{17} \] ### Step 4: Calculate the area of triangle OAB Now we can find the area: \[ A = \frac{1}{2} |\vec{A} \times \vec{B}| = \frac{1}{2} (5\sqrt{17}) = \frac{5\sqrt{17}}{2} \] Thus, the area of triangle OAB is: \[ \boxed{\frac{5\sqrt{17}}{2}} \text{ square units} \]

To find the area of triangle OAB formed by the vectors \(\vec{A}\) and \(\vec{B}\), we can use the formula for the area of a triangle given by two vectors originating from the same point. The area \(A\) of triangle OAB can be calculated using the formula: \[ A = \frac{1}{2} |\vec{A} \times \vec{B}| \] ### Step 1: Define the vectors We are given: ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

Find the area of triangle formed by the vectors from origin to the points A and B are veca=2hati-3hatj+2hatkandvecb=2hati+3hatj+hatk

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk

The position vectors of the points A,B, and C are hati+2hatj-hatk, hati+hatj+hatk , and 2hati+3hatj+2hatk respectively. If A is chosen as the origin, then the position vectors B and C are

The position vectors of the points A,B and C are hati+2hatj-hatk,hati+hatj+hatk and 2hati+3hatj+2hatk , respectively. If A is chosen as the origin, then the position vectors of B and C are

Find |vecaxxvecb| , if veca=2hati-7hatj+7hatk and vecb=3hati-2hatj+2hatk