Home
Class 12
CHEMISTRY
If the temperature coefficient of EMF if...

If the temperature coefficient of `EMF `if `-0.125V K^(-1), DeltaS` for the given cell at `25^(@)C` is `:`
`Fe|Fe^(2+)(aq)||Cd^(2+)(aq)|Cd`
1) `-26.125 k J K^(-1)`
2) `-24.125k J K^(-1)`
3) `-22.125 kJ K^(-1)`
4) `-20.125 k J K^(-1)`

A

`-26.125 k J K^(-1)`

B

`-24.125k J K^(-1)`

C

`-22.125 kJ K^(-1)`

D

`-20.125 k J K^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the change in entropy (ΔS) for the given electrochemical cell reaction using the provided temperature coefficient of EMF (ΔE/ΔT). Here’s the step-by-step solution: ### Step 1: Identify the cell reaction From the cell representation \( \text{Fe} | \text{Fe}^{2+}(aq) || \text{Cd}^{2+}(aq) | \text{Cd} \), we can write the half-reactions: - Anode: \( \text{Fe} \rightarrow \text{Fe}^{2+} + 2e^- \) - Cathode: \( \text{Cd}^{2+} + 2e^- \rightarrow \text{Cd} \) ### Step 2: Write the overall cell reaction The overall cell reaction can be written as: \[ \text{Fe} + \text{Cd}^{2+} \rightarrow \text{Fe}^{2+} + \text{Cd} \] ### Step 3: Determine the number of electrons transferred (n) From the half-reactions, we see that 2 electrons are transferred in the reaction. Therefore, \( n = 2 \). ### Step 4: Use the formula for ΔS The relationship between the change in entropy (ΔS), the number of moles of electrons transferred (n), Faraday's constant (F), and the temperature coefficient of EMF (ΔE/ΔT) is given by: \[ \Delta S = nF \left( \frac{\Delta E}{\Delta T} \right) \] ### Step 5: Substitute the known values - \( n = 2 \) - \( F = 96500 \, \text{C/mol} \) (Faraday's constant) - \( \frac{\Delta E}{\Delta T} = -0.125 \, \text{V/K} \) Substituting these values into the formula: \[ \Delta S = 2 \times 96500 \, \text{C/mol} \times (-0.125 \, \text{V/K}) \] ### Step 6: Calculate ΔS Now, we perform the calculation: \[ \Delta S = 2 \times 96500 \times (-0.125) \] \[ \Delta S = 2 \times 96500 \times -0.125 = -24125 \, \text{J/K} \] Converting this to kJ/K: \[ \Delta S = -24.125 \, \text{kJ/K} \] ### Conclusion Thus, the value of ΔS for the given cell at \( 25^\circ C \) is: **Option 2: -24.125 kJ K^(-1)** ---

To solve the problem, we need to calculate the change in entropy (ΔS) for the given electrochemical cell reaction using the provided temperature coefficient of EMF (ΔE/ΔT). Here’s the step-by-step solution: ### Step 1: Identify the cell reaction From the cell representation \( \text{Fe} | \text{Fe}^{2+}(aq) || \text{Cd}^{2+}(aq) | \text{Cd} \), we can write the half-reactions: - Anode: \( \text{Fe} \rightarrow \text{Fe}^{2+} + 2e^- \) - Cathode: \( \text{Cd}^{2+} + 2e^- \rightarrow \text{Cd} \) ### Step 2: Write the overall cell reaction ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    CENGAGE CHEMISTRY ENGLISH|Exercise Ex 3.2 (Objective)|26 Videos
  • ELECTROCHEMISTRY

    CENGAGE CHEMISTRY ENGLISH|Exercise Ex 3.3 (Objective)|10 Videos
  • ELECTROCHEMISTRY

    CENGAGE CHEMISTRY ENGLISH|Exercise Solved Examples(Electrolysis And Electrolytic Cells)|12 Videos
  • D AND F BLOCK ELEMENTS

    CENGAGE CHEMISTRY ENGLISH|Exercise Archives Subjective|29 Videos
  • GENERAL PRINCIPLES AND PROCESS OF ISOLATION OF ELEMENTS

    CENGAGE CHEMISTRY ENGLISH|Exercise Archives (Subjective)|14 Videos

Similar Questions

Explore conceptually related problems

J Kg^(-1) K^(-1) is the unit of

If tan 35^(@) = k , then the value of ( tan 145^(@) - tan 125^(@))/(1+ tan 145^(@) tan 125^(@)) =

If A=[[2,4],[-1,k]] and A^2=0 then find k

The temperature at which the given reaction is at equilibrium Ag_(2)O_(s) rightarrow 2Ag(s) + 1/2 O_(2)(g) Delta H = 40.5 kJ mol^(-1) and DeltaS= 0.086 k J mol^(-1) K^(-1)

Identify the reaction order form each of the following rate constants: a. k = 7.06 xx 10^(-3) mol L^(-1) s^(-1) b. k = 5.6 xx 10^(-5) s^(-1) c. k = 1.25 xx 10^(-2) mol^(-1)l s^(-1) d. k = 1.25 xx 10^(-2) mol L^(2)s^(-1) e. k = 5.0 xx 10^(-6) atm^(-1)s^(-1)

The gas constant for one kg of oxygen is 259.3 J kg ^(-1) K ^(-1). Find the value of C_(p) and C_(v) in J mol ^(-1) K ^(-1) gamma = 1.4

What is the equilibrium constant K_(c) for the following reaction at 400K ? 2NOCI(g) hArr 2NO(g) +CI_(2)(g) DeltaH^(Theta) = 77.2 kJ mol^(-1) and DeltaS^(Theta) = 122 J K^(-1) mol^(-1) at 400K .

The temperature coefficient of a cell whose operation is based on the reaction Pb(s)+HgCl_2(aq)toPbCl_2(aq)+Hg(l) is : ((dE)/(dT))_P=1.5xx10^(-4)VK^(-1) at 298 K The change in entropy (in J/k mol) during the operation is :

The value of log_(10)K for a reaction A hArr B is (Given: Delta_(f)H_(298K)^(Theta) =- 54.07 kJ mol^(-1) , Delta_(r)S_(298K)^(Theta) =10 JK^(=1) mol^(-1) , and R = 8.314 J K^(-1) mol^(-1)

Find the greatest value of k for which 49^(k)+1 is a factor of 1+49+49^(2)….(49)^(125)