Home
Class 12
CHEMISTRY
The equilibrium constant of the reaction...

The equilibrium constant of the reaction; Cu(s)+2Ag + (aq)⟶Cu 2+ (aq)+2Ag(s) E o =0.46V at 298K

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the Nernst equation to find the equilibrium constant (K) for the given reaction. The Nernst equation relates the standard cell potential (E°) to the equilibrium constant. ### Step-by-Step Solution: 1. **Write the Nernst Equation**: The Nernst equation is given by: \[ E = E^\circ - \frac{RT}{nF} \ln Q \] At equilibrium, \(E = 0\) and \(Q = K\) (the equilibrium constant), so we can rewrite the equation as: \[ 0 = E^\circ - \frac{RT}{nF} \ln K \] 2. **Rearrange the Equation**: Rearranging the equation to solve for \(K\): \[ E^\circ = \frac{RT}{nF} \ln K \] \[ \ln K = \frac{nFE^\circ}{RT} \] \[ K = e^{\frac{nFE^\circ}{RT}} \] 3. **Identify the Variables**: - Given \(E^\circ = 0.46 \, \text{V}\) - The number of electrons transferred \(n = 2\) (from the balanced reaction) - Faraday's constant \(F = 96500 \, \text{C/mol}\) - Gas constant \(R = 8.314 \, \text{J/(mol K)}\) - Temperature \(T = 298 \, \text{K}\) 4. **Substitute the Values**: Substitute the known values into the equation: \[ K = e^{\frac{(2)(96500)(0.46)}{(8.314)(298)}} \] 5. **Calculate the Exponent**: First, calculate the numerator: \[ (2)(96500)(0.46) = 88940 \] Then calculate the denominator: \[ (8.314)(298) = 2477.572 \] Now, compute the exponent: \[ \frac{88940}{2477.572} \approx 35.9 \] 6. **Find \(K\)**: Now calculate \(K\): \[ K = e^{35.9} \] Using a calculator, we find: \[ K \approx 4.4 \times 10^{15} \] ### Final Answer: The equilibrium constant \(K\) for the reaction is approximately \(4.4 \times 10^{15}\). ---

To solve the problem, we will use the Nernst equation to find the equilibrium constant (K) for the given reaction. The Nernst equation relates the standard cell potential (E°) to the equilibrium constant. ### Step-by-Step Solution: 1. **Write the Nernst Equation**: The Nernst equation is given by: \[ E = E^\circ - \frac{RT}{nF} \ln Q ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    CENGAGE CHEMISTRY ENGLISH|Exercise Archieves True/False|1 Videos
  • D AND F BLOCK ELEMENTS

    CENGAGE CHEMISTRY ENGLISH|Exercise Archives Subjective|29 Videos
  • GENERAL PRINCIPLES AND PROCESS OF ISOLATION OF ELEMENTS

    CENGAGE CHEMISTRY ENGLISH|Exercise Archives (Subjective)|14 Videos

Similar Questions

Explore conceptually related problems

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

The equilibrium constant at 298 K for the reaction Cu(s) + 2Ag+ (aq) ⇌ Cu2+ (aq) + 2Ag(s) is 2.0 × 1015 . The concentrations of Cu2+ and Ag+ ions are 1.8 × 10-2 mol L-1 and 3.0 x 10-19 mol L-1 respectively. Is this reaction at equilibrium?

The equilibrium constant of the reaction : Zn(s)+2Ag^(+)(aq)toZn(aq)+2Ag(s),E^(@)=1.50V at 298 K is

The equilibrium constant for the reactions Cu (s)+ 2Ag^(+) aq hArr Cu^(2+) (aq) +2Ag(s) is 2.0 xx 10 ^(15) " at " 278 K. Find the equilibrium concentration of Cu^(2+) (aq) if that of Ag^(+) (aq) is 1.0 xx 10 ^(-11) " mol " L^(-1)

The equivalent constant of the reaction: Cu(s)+2Ag^(+)(aq.) rarr Cu^(2+)(aq.)+2Ag(s) E^(@)=0.46 V at 298 K ,is:

The equilibrium constant for a cell reaction, Cu(g) + 2Ag^+(aq) → Cu^(2+)(aq) + 2Ag (s) is 4 × 10^16 . Find E° (cell) for the cell reaction.

The equilibrium constant for the cell Cu(s)+2Ag^+(aq)rarrCu^(2+)(aq)+2Ag(s) ,at 298K is [Given, E_((Ag)^+/(Ag))^o=0.8V and E_((Cu)^(2+)/(Cu))^o=0.34V ]

Given the equilibrium constant : K_(c) of the reaction : Cu(s) + 2Ag^(+)(aq) rightarrow Cu^(2+) (Aq) + 2Ag(s) is 10xx10^(15) , calculate the E_(cell)^(@) of this reaction at 298K . ([2.303 (RT)/(Ft) at 298K = 0.059V])

Find the equilibrium constant of the following reaction Cu^(2+) (aq) +Sn^(2+) (aq) hArr Cu(s) +Sn^(4+) (aq) at 25^(@)C, E_(Cu^(2+)//Cu)^(Theta)=0.34V, E_(Sn^(4+)//Sn^(2+))^(Theta)=0.155V