Home
Class 12
CHEMISTRY
The rate constant of a reactant is 1.5 x...

The rate constant of a reactant is `1.5 xx 10^(-3)` at `25^(@)C` and `2.1 xx 10^(-2)` at `60^(@)C`. The activation energy is

A

`(35)/(333)R log_(e).(2.1 xx 10^(-2))/(1.5 xx 10^(-2))`

B

`(298 xx 333)/(35)R log_(e). (21)/(1.5)`

C

`(298 xx 333)/(35)R log_(e) 2.1`

D

`(298 xx 333)/(35) R log_(e).(2.1)/(1.5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the activation energy (Ea) using the given rate constants at two different temperatures, we can use the Arrhenius equation in its logarithmic form. The equation we will use is: \[ \ln \left( \frac{k_2}{k_1} \right) = -\frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \] ### Step 1: Convert temperatures to Kelvin The temperatures given are: - \( T_1 = 25^\circ C = 25 + 273 = 298 \, K \) - \( T_2 = 60^\circ C = 60 + 273 = 333 \, K \) ### Step 2: Identify the rate constants The rate constants are given as: - \( k_1 = 1.5 \times 10^{-3} \) - \( k_2 = 2.1 \times 10^{-2} \) ### Step 3: Calculate the natural logarithm of the ratio of rate constants \[ \ln \left( \frac{k_2}{k_1} \right) = \ln \left( \frac{2.1 \times 10^{-2}}{1.5 \times 10^{-3}} \right) \] Calculating the ratio: \[ \frac{2.1 \times 10^{-2}}{1.5 \times 10^{-3}} = \frac{2.1}{1.5} \times 10^{1} = 14 \] Now, take the natural logarithm: \[ \ln(14) \] ### Step 4: Substitute into the Arrhenius equation Using the gas constant \( R = 8.314 \, J/(mol \cdot K) \): \[ \ln(14) = -\frac{E_a}{8.314} \left( \frac{1}{298} - \frac{1}{333} \right) \] ### Step 5: Calculate the difference in the reciprocals of the temperatures \[ \frac{1}{298} - \frac{1}{333} = \frac{333 - 298}{298 \times 333} = \frac{35}{99306} \] ### Step 6: Rearranging to find activation energy Rearranging the equation for \( E_a \): \[ E_a = -R \cdot \ln(14) \cdot \left( \frac{99306}{35} \right) \] ### Step 7: Substitute values and calculate \( E_a \) Now substituting the values: \[ E_a = -8.314 \cdot \ln(14) \cdot \left( \frac{99306}{35} \right) \] ### Step 8: Calculate \( E_a \) Using a calculator to find \( \ln(14) \approx 2.639 \): \[ E_a \approx -8.314 \cdot 2.639 \cdot \left( \frac{99306}{35} \right) \] Calculating this gives the activation energy. ### Final Result After performing the calculations, you will find the activation energy \( E_a \).

To find the activation energy (Ea) using the given rate constants at two different temperatures, we can use the Arrhenius equation in its logarithmic form. The equation we will use is: \[ \ln \left( \frac{k_2}{k_1} \right) = -\frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \] ### Step 1: Convert temperatures to Kelvin The temperatures given are: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CHEMICAL KINETICS

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises Assertion-Reasoning|22 Videos
  • CHEMICAL KINETICS

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises Integer|15 Videos
  • CHEMICAL KINETICS

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises Multiple Correct|33 Videos
  • CARBOXYLIC ACIDS AND THEIR DERIVATIVES

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises Archives (Analytical And Descriptive)|34 Videos
  • COORDINATION COMPOUNDS

    CENGAGE CHEMISTRY ENGLISH|Exercise Archives Subjective|18 Videos

Similar Questions

Explore conceptually related problems

The rate constant of a reaction is 1.5xx10^(-4)s^(-1)" at "27^(@)C and 3xx10^(-4)s^(-1)" at "127^(@)C . The Ea is

The rate constant of a reaction is 1.2 xx10^(-3) s^(-1) at 30^@C and 2.1xx10^(-3)s^(-1) at 40^@C . Calculate the energy of activation of the reaction.

The rate constant for a reaction is 1.5 xx 10^(-7) at 50^(@) C and 4.5 xx 10^(7)s^(-1) at 100^(@) C . What is the value of activation energy?

The rate constant of a reaction is 1.5 xx 10^(7)s^(-1) at 50^(@) C and 4.5 xx 10^(7)s^(-1) at 100^(@) C. Calculate the value of activation energy for the reaction (R=8.314 J K^(-1)mol^(-1))

The rate constant of a reaction is 1.5 xx 10^(7)s^(-1) at 50^(@)C and 4.5 xx 10^(7) s^(-1) at 100^(@)C . Evaluate the Arrhenius parameters A and E_(a) .

The rate constant of a reaction is 1.5 xx 10^(7)s^(-1) at 50^(@)C and 4.5 xx 10^(7) s^(-1) at 100^(@)C . Evaluate the Arrhenius parameters A and E_(a) .

The first order reaction 2N_(2)O(g)rarr2N_(2)(g)+O_(2)(g) has a rate constant of 1.3 xx 10^(-11)s^(-1) at 270^(@)C and 4.5 xx 10^(-10)s^(-1) at 350^(@)C . What is the activation energy for this reaction ?

The rate constant of a reaction is 6 × 10^-3 s^-1 at 50° and 9 × 10^-3 s^-1 at 100° C. Calculate the energy of activation of the reaction.

For the reaction of H_(2) with I_(2) , the constant is 2.5 xx 10^(-4) dm^(3) mol^(-1)s^(-1) at 327^(@)C and 1.0 dm^(3) mol^(-1) s^(-1) at 527^(@)C . The activation energy for the reaction is 1.65 xx 10x J//"mole" . The numerical value of x is __________. (R = 8314JK^(-1) mol^(-1))

For the reaction of H_(2) with I_(2) , the constant is 2.5 xx 10^(-4) dm^(3) mol^(-1)s^(-1) at 327^(@)C and 1.0 dm^(3) mol^(-1) s^(-1) at 527^(@)C . The activation energy for the reaction is 1.65 xx 10x J//"mole" . The numerical value of x is __________. (R = 8314JK^(-1) mol^(-1))