Home
Class 12
MATHS
If f(x)=sin^(-1)x and lim(xto1//2+)f(3x-...

If `f(x)=sin^(-1)x and lim_(xto1//2+)f(3x-4x^3)=a-3lim_(xto1//2+)f(x)`, then [a] is equal to {where [] denotes G.I.F}

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given function and limit expression. ### Step 1: Define the function and limit We have the function: \[ f(x) = \sin^{-1}(x) \] We need to evaluate: \[ \lim_{x \to \frac{1}{2}^+} f(3x - 4x^3) = a - 3 \lim_{x \to \frac{1}{2}^+} f(x) \] ### Step 2: Evaluate the limit on the right side First, we calculate: \[ \lim_{x \to \frac{1}{2}^+} f(x) = \lim_{x \to \frac{1}{2}^+} \sin^{-1}(x) \] As \( x \) approaches \( \frac{1}{2} \): \[ \lim_{x \to \frac{1}{2}^+} \sin^{-1}(x) = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \] ### Step 3: Evaluate the limit on the left side Next, we need to evaluate: \[ \lim_{x \to \frac{1}{2}^+} f(3x - 4x^3) = \lim_{x \to \frac{1}{2}^+} \sin^{-1}(3x - 4x^3) \] Calculating \( 3x - 4x^3 \) as \( x \) approaches \( \frac{1}{2} \): \[ 3\left(\frac{1}{2}\right) - 4\left(\frac{1}{2}\right)^3 = \frac{3}{2} - 4 \cdot \frac{1}{8} = \frac{3}{2} - \frac{1}{2} = 1 \] Thus, \[ \lim_{x \to \frac{1}{2}^+} \sin^{-1}(3x - 4x^3) = \sin^{-1}(1) = \frac{\pi}{2} \] ### Step 4: Set up the equation Now we have: \[ \frac{\pi}{2} = a - 3 \cdot \frac{\pi}{6} \] Calculating \( 3 \cdot \frac{\pi}{6} \): \[ 3 \cdot \frac{\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] Substituting this back into the equation gives: \[ \frac{\pi}{2} = a - \frac{\pi}{2} \] ### Step 5: Solve for \( a \) Adding \( \frac{\pi}{2} \) to both sides: \[ \frac{\pi}{2} + \frac{\pi}{2} = a \] Thus, \[ a = \pi \] ### Step 6: Find the greatest integer value of \( a \) The value of \( \pi \) is approximately \( 3.14 \). Therefore, the greatest integer value of \( a \) is: \[ \lfloor a \rfloor = \lfloor \pi \rfloor = 3 \] ### Final Answer Thus, the greatest integer value of \( a \) is: \[ \boxed{3} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - H)(MULTIPLE TRUE-FALSE TYPE QUESTIONS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - I)(SUBJECTIVE TYPE QUESTION)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - F)(MATRIX-MATCH TYPE QUESTION)|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)(4x^3-3x)and lim_(xto1/2+)f'(x)=a and lim_(xto1/2-)f'(x)=b then a + b+ 3 is equal to ____

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

lim_(xto1) (1-x^(2))/(sin2pix) is equal to

Given g(x)=(1/x), h(x)=x^(2)+2x+(lamda+1) and u(x)=1/x+cos(1/(x^(2))) Let f(x)=lim_(ntooo)(x^(2n+1)g(x)+h(x))/(x^(2n)+3x.u(x)) If lim+(xto2)f(x)=I , then [I] (where [.] denotes the greatest integer function), is equal to :

Given that f(x) = (4-7x)/((3x+4)) , I = Lim_(x to 2 ) f(x) and m = Lim_(x to 0) f(x) , form the equation whose are 1/l , 1/m

Let lim_(xto1)(x^(a)-ax+a-1)/((x-1)^(2))=f(a) . The value of f(101) equals

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

Evaluate lim_(xto1) ((2)/(1-x^(2))-(1)/(1-x)).

Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))) , then lim_(xto1^(-))f(x)=0 and lim_(xto2^(-))f(x)=2 Statement 2: lim_(xtooo)cot^(-1)x=0 and lim_(xto -oo)cot^(-1)x=pi

lim_(xto1)(sin^(2)(x^(3)+x^(2)+x-3))/(1-cos(x^(2)-4x+3)) has the value equal to