Home
Class 12
MATHS
Let lambda=sec^2(tan^(-1)2)+cosec^2(cot^...

Let `lambda=sec^2(tan^(-1)2)+cosec^2(cot^(-1)3)+2` then the value of `17lambda^2+7` is ……

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda = \sec^2(\tan^{-1} 2) + \csc^2(\cot^{-1} 3) + 2 \) and then compute \( 17\lambda^2 + 7 \). ### Step-by-step Solution: 1. **Calculate \( \sec^2(\tan^{-1} 2) \)**: - Let \( a = \tan^{-1}(2) \). - Then, \( \tan(a) = 2 \). - Using the identity \( \sec^2(a) = 1 + \tan^2(a) \): \[ \sec^2(a) = 1 + \tan^2(a) = 1 + 2^2 = 1 + 4 = 5. \] 2. **Calculate \( \csc^2(\cot^{-1} 3) \)**: - Let \( b = \cot^{-1}(3) \). - Then, \( \cot(b) = 3 \) implies \( \tan(b) = \frac{1}{3} \). - Using the identity \( \csc^2(b) = 1 + \cot^2(b) \): \[ \csc^2(b) = 1 + \cot^2(b) = 1 + 3^2 = 1 + 9 = 10. \] 3. **Combine the results to find \( \lambda \)**: - Now substituting the values we found: \[ \lambda = \sec^2(\tan^{-1} 2) + \csc^2(\cot^{-1} 3) + 2 = 5 + 10 + 2 = 17. \] 4. **Calculate \( 17\lambda^2 + 7 \)**: - First, find \( \lambda^2 \): \[ \lambda^2 = 17^2 = 289. \] - Now substitute into the expression: \[ 17\lambda^2 + 7 = 17 \times 289 + 7. \] - Calculate \( 17 \times 289 \): \[ 17 \times 289 = 4913. \] - Finally, add 7: \[ 4913 + 7 = 4920. \] ### Final Answer: The value of \( 17\lambda^2 + 7 \) is \( \boxed{4920} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - H)(MULTIPLE TRUE-FALSE TYPE QUESTIONS)|1 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

sec^(2) (tan^(-1) 2) + cosec^(2) (cot^(-1) 3) is equal to

prove that sec^(2)(tan^(-1)2)+cosec^2(cot^(-1)3)=15

Knowledge Check

  • The value of tan^(2) (sec^(-1)2)+ cot^(2) ("cosec"^(-1)3) is

    A
    11
    B
    13
    C
    15
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    sec^(2) (tan^(-1) 4) + cosec^(2) (cot ^(-1) 3) =?

    Prove that sec^(2) (tan ^(-1) 3) + cosec^(2)(cot^(-1)2) = 15

    If sin^2thetacos^2theta(1+tan^2theta)(1+cot^2theta)=lambda , then find the value of lambda .

    Prove that: sec^2(tan^(-1)2)+cos e c^2(cot^(-1)3)=15 and tan^2(sec^(-1)2)+cot^2(cos e c^(-1)3)=11

    Prove that: sec^2(tan^(-1)2)+cos e c^2(cot^(-1)3)=15 and tan^2(sec^(-1)2)+cot^2(cos e c^(-1)3)=11

    int_(2)^(4) (3x^(2)+1)/((x^(2)-1)^(3))dx = (lambda)/(n^(2)) where lambda, n in N and gcd(lambda,n) = 1 , then find the value of lambda + n

    If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is