Home
Class 12
MATHS
The matrix A={:[((1)/(sqrt(2)),(1)/(sqrt...

The matrix `A={:[((1)/(sqrt(2)),(1)/(sqrt(2))),((-1)/(sqrt(2)),(-1)/(sqrt(2)))]:}` is

A

Unitary

B

Orthogonal

C

Nilpotent

D

Involutary

Text Solution

AI Generated Solution

The correct Answer is:
To determine the properties of the matrix \( A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \), we will check if it is unitary, orthogonal, nilpotent, or involutory. ### Step 1: Check if \( A \) is Unitary A matrix \( A \) is unitary if \( A^* A = I \), where \( A^* \) is the conjugate transpose of \( A \). 1. Find the transpose of \( A \): \[ A^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \] 2. Since \( A \) has real entries, \( A^* = A^T \). 3. Calculate \( A^T A \): \[ A^T A = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \] Performing the multiplication: - First row, first column: \( \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + (-\frac{1}{\sqrt{2}}) \cdot (-\frac{1}{\sqrt{2}}) = \frac{1}{2} + \frac{1}{2} = 1 \) - First row, second column: \( \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + (-\frac{1}{\sqrt{2}}) \cdot (-\frac{1}{\sqrt{2}}) = \frac{1}{2} + \frac{1}{2} = 1 \) - Second row, first column: \( \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + (-\frac{1}{\sqrt{2}}) \cdot (-\frac{1}{\sqrt{2}}) = \frac{1}{2} + \frac{1}{2} = 1 \) - Second row, second column: \( \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + (-\frac{1}{\sqrt{2}}) \cdot (-\frac{1}{\sqrt{2}}) = \frac{1}{2} + \frac{1}{2} = 1 \) Thus, \[ A^T A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \neq I \] ### Step 2: Check if \( A \) is Orthogonal A matrix \( A \) is orthogonal if \( A^T A = I \). From the previous step, we found that \( A^T A \neq I \). ### Step 3: Check if \( A \) is Nilpotent A matrix \( A \) is nilpotent if \( A^n = 0 \) for some positive integer \( n \). 1. Calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \] Performing the multiplication: - First row, first column: \( \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot (-\frac{1}{\sqrt{2}}) = \frac{1}{2} - \frac{1}{2} = 0 \) - First row, second column: \( \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \cdot (-\frac{1}{\sqrt{2}}) = \frac{1}{2} - \frac{1}{2} = 0 \) - Second row, first column: \( -\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + (-\frac{1}{\sqrt{2}}) \cdot (-\frac{1}{\sqrt{2}}) = -\frac{1}{2} + \frac{1}{2} = 0 \) - Second row, second column: \( -\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} + (-\frac{1}{\sqrt{2}}) \cdot (-\frac{1}{\sqrt{2}}) = -\frac{1}{2} + \frac{1}{2} = 0 \) Thus, \[ A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] Since \( A^2 = 0 \), \( A \) is nilpotent. ### Step 4: Check if \( A \) is Involutory A matrix \( A \) is involutory if \( A^2 = I \). Since we found \( A^2 = 0 \), it is not involutory. ### Conclusion The matrix \( A \) is nilpotent.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - I) Subjective Type Questions|3 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

The matrix A=[{:(1/sqrt2,1/sqrt2),((-1)/sqrt2,(-1)/sqrt2):}] is

log((sqrt2-1)/(sqrt2+1))

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

Prove that : (1)/(sqrt(2)+1)+ (1)/(sqrt(3)+sqrt(2))+ (1)/(2+sqrt(3))=1

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

1+(sqrt(2))/(2-sqrt(2)) is equal to

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .

Sum the series to infinity : sqrt(2)- (1)/(sqrt(2))+(1)/(2(sqrt(2)))-(1)/(4sqrt(2))+ ....

Simplify: (1)/(sqrt(3+2sqrt(2)))+(1)/(sqrt(3+2sqrt(2)))