Home
Class 12
MATHS
If lim(x to 0) ("sin" 2x + a "sin" x)/(...

If `lim_(x to 0) ("sin" 2x + a "sin" x)/(x^(3)) =b` (finite), then `(ab)^(2)` equals…..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the values of \( a \) and \( b \) such that \[ \lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3} = b \] is finite. Let's go through the steps systematically. ### Step 1: Identify the form of the limit When we substitute \( x = 0 \) into the expression, we get: \[ \frac{\sin 2(0) + a \sin(0)}{0^3} = \frac{0 + 0}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: \[ \lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3} = \lim_{x \to 0} \frac{2 \cos 2x + a \cos x}{3x^2} \] ### Step 3: Substitute \( x = 0 \) again Now, substituting \( x = 0 \) gives: \[ \frac{2 \cos 0 + a \cos 0}{3 \cdot 0^2} = \frac{2 + a}{0} \] This indicates that for the limit to be finite, the numerator must equal zero: \[ 2 + a = 0 \implies a = -2 \] ### Step 4: Substitute \( a \) back into the limit Now, substitute \( a = -2 \) into the limit expression: \[ \lim_{x \to 0} \frac{\sin 2x - 2 \sin x}{x^3} \] ### Step 5: Apply L'Hôpital's Rule again This again gives the form \( \frac{0}{0} \), so we apply L'Hôpital's Rule again: \[ \lim_{x \to 0} \frac{2 \cos 2x - 2 \cos x}{3x^2} \] ### Step 6: Substitute \( x = 0 \) again Substituting \( x = 0 \): \[ \frac{2 \cos 0 - 2 \cos 0}{3 \cdot 0^2} = \frac{2 - 2}{0} = \frac{0}{0} \] We apply L'Hôpital's Rule again: \[ \lim_{x \to 0} \frac{-4 \sin 2x + 2 \sin x}{6x} \] ### Step 7: Substitute \( x = 0 \) again Substituting \( x = 0 \): \[ \frac{-4 \sin 0 + 2 \sin 0}{6 \cdot 0} = \frac{0}{0} \] We apply L'Hôpital's Rule once more: \[ \lim_{x \to 0} \frac{-8 \cos 2x + 2 \cos x}{6} \] ### Step 8: Substitute \( x = 0 \) one last time Substituting \( x = 0 \): \[ \frac{-8 \cos 0 + 2 \cos 0}{6} = \frac{-8 + 2}{6} = \frac{-6}{6} = -1 \] Thus, we find that \( b = -1 \). ### Step 9: Calculate \( (ab)^2 \) Now, we have \( a = -2 \) and \( b = -1 \): \[ ab = (-2)(-1) = 2 \] Thus, \[ (ab)^2 = 2^2 = 4 \] ### Final Answer Therefore, the value of \( (ab)^2 \) is \[ \boxed{4} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - H|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

lim_(x to 0) (sin x + cos 3x)^(2//x) =

Let lim_(x to 0) ("sin" 2X)/(x) = a and lim_(x to 0) (3x)/(tan x) = b , then a + b equals

Evaluate lim_(x to 0) ("sin"^(2) 4x)/(x^(2))

The value of lim_(x to 0) ("sin" alpha X - "sin" beta x)/(e^(alphax) - e^(beta x)) equals

If L= lim_(xto0) (sin2x+asinx)/(x^(3)) is finite, then find the value of a and L.

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

3. lim_(x rarr0)(sin x sin^(-1)x)/(x^(2))

lim_(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is