Home
Class 12
MATHS
Let ABCD be a parallelogram whose diagon...

Let `ABCD` be a parallelogram whose diagonals intersect at P and let O be the origin. Then prove that `vec(OA)+vec(OB)+vec(OC)+vec(OD)=4vec(OP)`.

A

`vecOP`

B

`2vecOP`

C

`3veOP`

D

`4vecOP`

Text Solution

Verified by Experts

The correct Answer is:
4
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-A)|50 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Let A B C D be a parallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

Let A B C D be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

Knowledge Check

  • If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + vec(EB) + vec(EC) + vec( ED) equals

    A
    `vec(0)`
    B
    `vec(AD)`
    C
    `2 vec(BC)`
    D
    `2 vec(AD)`
  • Similar Questions

    Explore conceptually related problems

    Let A B C D be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot

    ABCD is a parallelogram whose diagonals meet at P. If O is a fixed point, then vec(OA)+vec(OB)+vec(OC)+vec(OD) equals :

    If A B C D is a rhombus whose diagonals cut at the origin O , then proved that vec O A+ vec O B+ vec O C+ vec O D =0

    Let vec(C )= vec(A)+vec(B) then

    If A B C D is a rhombus whose diagonals cut at the origin O , then proved that vec O A+ vec O B+ vec O C+ vec O D+ vec Odot

    If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

    If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: vec(OA) +vec(OB)+vec(OC)=vec(OO')