Home
Class 12
MATHS
If vecb ne 0, then every vector veca can...

If `vecb ne 0`, then every vector `veca` can be written in a unique manner as the sum of a vector `veca_(p)` parallel to `vecb` and a vector `veca_(q)` perpendicular to `vecb`. If `veca` is parallel to `vecb` then `veca_(q)`=0 and `veca_(q)=veca`. The vector `veca_(p)` is called the projection of `veca` on `vecb` and is denoted by proj `vecb(veca)`. Since proj`vecb(veca)` is parallel to `vecb`, it is a scalar multiple of the vector in the direction of `vecb` i.e.,
proj `vecb(veca)=lambdavecUvecb" " (vecUvecb=(vecb)/(|vecb|))`
The scalar `lambda` is called the componennt of `veca` in the direction of `vecb` and is denoted by comp `vecb(veca)`. In fact proj `vecb(veca)=(veca.vecUvecb)vecUvecb` and comp `vecb(veca)=veca.vecUvecb`.
If `veca=-2hatj+hatj+hatk` and `vecb=4hati-3hatj+hatk` then proj `vecb(veca)` is

A

(a)`4hati+3hatj+2hatk`

B

(b)`-(5)/(13)(4hati-hatj+2hatk)`

C

(c)`(5)/(13)(4hai-3hatj+hatk)`

D

(d)`-(4)/(11)(4hati-3hatj+2hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of vector \(\vec{a}\) onto vector \(\vec{b}\), we can follow these steps: ### Step 1: Identify the vectors Given: \[ \vec{a} = -2\hat{j} + \hat{j} + \hat{k} = -\hat{j} + \hat{k} \] \[ \vec{b} = 4\hat{i} - 3\hat{j} + \hat{k} \] ### Step 2: Calculate the unit vector of \(\vec{b}\) The unit vector \(\hat{u}_{\vec{b}}\) in the direction of \(\vec{b}\) is given by: \[ \hat{u}_{\vec{b}} = \frac{\vec{b}}{|\vec{b}|} \] First, we need to find the magnitude of \(\vec{b}\): \[ |\vec{b}| = \sqrt{(4)^2 + (-3)^2 + (1)^2} = \sqrt{16 + 9 + 1} = \sqrt{26} \] Now, we can find \(\hat{u}_{\vec{b}}\): \[ \hat{u}_{\vec{b}} = \frac{4\hat{i} - 3\hat{j} + \hat{k}}{\sqrt{26}} \] ### Step 3: Calculate the dot product \(\vec{a} \cdot \hat{u}_{\vec{b}}\) Now we compute the dot product \(\vec{a} \cdot \hat{u}_{\vec{b}}\): \[ \vec{a} \cdot \hat{u}_{\vec{b}} = (-\hat{j} + \hat{k}) \cdot \left(\frac{4\hat{i} - 3\hat{j} + \hat{k}}{\sqrt{26}}\right) \] Calculating the dot product: \[ = 0 \cdot \frac{4}{\sqrt{26}} + (-1) \cdot \frac{-3}{\sqrt{26}} + 1 \cdot \frac{1}{\sqrt{26}} = \frac{3}{\sqrt{26}} + \frac{1}{\sqrt{26}} = \frac{4}{\sqrt{26}} \] ### Step 4: Calculate the projection of \(\vec{a}\) onto \(\vec{b}\) The projection of \(\vec{a}\) onto \(\vec{b}\) is given by: \[ \text{proj}_{\vec{b}}(\vec{a}) = (\vec{a} \cdot \hat{u}_{\vec{b}}) \hat{u}_{\vec{b}} \] Substituting the values: \[ \text{proj}_{\vec{b}}(\vec{a}) = \left(\frac{4}{\sqrt{26}}\right) \left(\frac{4\hat{i} - 3\hat{j} + \hat{k}}{\sqrt{26}}\right) \] \[ = \frac{4}{26}(4\hat{i} - 3\hat{j} + \hat{k}) = \frac{16}{26}\hat{i} - \frac{12}{26}\hat{j} + \frac{4}{26}\hat{k} \] \[ = \frac{8}{13}\hat{i} - \frac{6}{13}\hat{j} + \frac{2}{13}\hat{k} \] ### Final Answer Thus, the projection of \(\vec{a}\) onto \(\vec{b}\) is: \[ \text{proj}_{\vec{b}}(\vec{a}) = \frac{8}{13}\hat{i} - \frac{6}{13}\hat{j} + \frac{2}{13}\hat{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-E) Assertion-Reason Type Question|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-F (Matrix-Match Type Questions)|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If the vector vecb = 3hati + 4hatk is written as the sum of a vector vecb_(1) parallel to veca = hati + hatj and a vector vecb_(2) , perpendicular to veca then vecb_(1) xx vecb_(2) is equal to:

If veca and vecb are two unit vectors, then the vector (veca+vecb)xx(vecaxxvecb) is parallel to the vector

Three vectors vecA, vecB and vecC satisfy the relation vecA. vecB=0 and vecA. vecC=0. The vector vecA is parallel to

If veca an vecb are perpendicular vectors, |veca+vecb|=13 and |veca|=5 , find the value of |vecb| .

If veca and vecb are othogonal unit vectors, then for a vector vecr non - coplanar with veca and vecb vector vecr xx veca is equal to

The vector (veca.vecb)vecc-(veca.vecc)vecb is perpendicular to

Show that |veca|vecb+|vecb|veca is perpendicular to |veca|vecb-|vecb|veca for any two non zero vectors veca and vecb.

Show that |veca|vecb+|vecb|veca is perpendicular to |veca|vecb-|vecb|veca for any two non zero vectors veca and vecb.

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

If veca and vecb are mutually perpendicular unit vectors, vecr is a vector satisfying vecr.veca =0, vecr.vecb=1 and (vecr veca vecb)=1 , then vecr is: