Home
Class 12
MATHS
<b>Statement 1: </b>int(xe^(x)dx)/((1+x)...

Statement 1: `int(xe^(x)dx)/((1+x)^(2))=(e^(x))/(x+1)+C`
Statement 2: `inte^(x)(f(x)+f'(x))dx=e^(x)f(x)+C`

A

(a) Statement 1 and Statement 2 are true and Statement 2 is the correct explantation for Statement 1

B

(b) Statement 1 and Statement 2 are true but Statement 2 is not the correct explantation for Statement 1

C

(c) Statement 1 is true but Statement 2 is false

D

(d) Statement 2 is true but Statement 1 is false

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Integar Type Questions|8 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Linked Comprehension Type Questions|11 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

int x.e^(2x)dx

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

Statement-1: int((x^2-1)/x^2)e^((x^2+1)/x)dx=e^((x^2+1)/x)+C Statement-2: intf(x)e^(f(x))dx=f(x)+C (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

int(e^x)/((1+e^x)(2+e^x))dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

Statement I int((1)/(1+x^(4)))dx=tan^(-1)(x^(2))+C Statement II int(1)/(1+x^(2))dx=tan^(-1)x +C

Let n in N such that n gt 1 . Statement-1: int_(oo)^(0) (1)/(1+x^(n))dx=int_(0)^(1) (1)/((1-x^(n))^(1//n))dx Statement-2: int_a^b f(x)dx=int_(a)^(b) f(a+b-x)dx

inte^(x)(1+x)sec^(2)(xe^(x))dx=f (x)+ Constant , then f (x) is equal to

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .