Home
Class 12
MATHS
STATEMENT-1 : int(x^(2)-1)/(x^(2))e^(((x...

STATEMENT-1 : `int(x^(2)-1)/(x^(2))e^(((x^(2)+1)/(x)))dx=e^((x^(2)+1)/x)+C`
and
STATEMENT-2 : `intf'(x)e^(f(x))dx=e^(f(x))+c`

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explantation for Statement-1

B

Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explantation for Statement-1

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral problem in Statement 1, we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{x^2 - 1}{x^2} e^{\frac{x^2 + 1}{x}} \, dx \] We can simplify the integrand: \[ \frac{x^2 - 1}{x^2} = 1 - \frac{1}{x^2} \] Thus, the integral becomes: \[ \int \left(1 - \frac{1}{x^2}\right) e^{\frac{x^2 + 1}{x}} \, dx \] ### Step 2: Substitute for Easier Integration Let: \[ t = \frac{x^2 + 1}{x} \] Now, differentiate \(t\) with respect to \(x\): \[ dt = \left(2x - \frac{x^2 + 1}{x^2}\right) dx = \left(2x - \frac{1}{x}\right) dx \] This simplifies to: \[ dt = \left(2 - \frac{1}{x^2}\right) dx \] Rearranging gives: \[ dx = \frac{dt}{2 - \frac{1}{x^2}} \] ### Step 3: Substitute Back into the Integral Now, substituting \(t\) and \(dx\) into the integral: \[ \int e^t \left(1 - \frac{1}{x^2}\right) \frac{dt}{2 - \frac{1}{x^2}} \] This integral can be simplified further. ### Step 4: Solve the Integral The integral of \(e^t\) is: \[ \int e^t \, dt = e^t + C \] Substituting back \(t = \frac{x^2 + 1}{x}\): \[ e^{\frac{x^2 + 1}{x}} + C \] ### Conclusion for Statement 1 Thus, we conclude that: \[ \int \frac{x^2 - 1}{x^2} e^{\frac{x^2 + 1}{x}} \, dx = e^{\frac{x^2 + 1}{x}} + C \] So, Statement 1 is true. ### Step 5: Verify Statement 2 For Statement 2: \[ \int f'(x) e^{f(x)} \, dx \] Using the substitution \(u = f(x)\), we have: \[ du = f'(x) \, dx \] Thus, the integral becomes: \[ \int e^u \, du = e^u + C = e^{f(x)} + C \] So, Statement 2 is also true. ### Final Conclusion Both statements are true, but Statement 2 does not serve as a correct explanation for Statement 1.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Integar Type Questions|8 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Multiple True-False Questions|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Linked Comprehension Type Questions|11 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : int(dx)/(e^(x)+e^(-x)+2)=-(1)/(e^(x)+1)+c and STATEMENT-2 : int(d(f(x)))/((f(x))^(2))=-(1)/(f(x))+c

int(x e^(2x))/((1+2x)^2)dx

int ((1-x)/(1+x^(2)))^(2) e^(x)dx

Statement-1: int((x^2-1)/x^2)e^((x^2+1)/x)dx=e^((x^2+1)/x)+C Statement-2: intf(x)e^(f(x))dx=f(x)+C (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

STATEMENT-1 : int(e^(log(1+(1)/(x^(2)))))/(x^(2)+(1)/(x^(2)))dx=(1)/(sqrt(2))tan^(-1).(x^(2)-1)/(sqrt(2)x)+c and STATEMENT-2 : e^(logx)= x if x gt 0 .

int_(0)^(1)e^(2x)e^(e^(x) dx =)

STATEMENT-1 : If int(1)/(f(x))dx=2log|f(x)|+c , then f(x)=(x)/(2) . STATEMENT-2 : When f(x)=(x)/(2) , then int(1)/(f(x))dx=int(2)/(x)dx=2log|x|+c STATEMENT-3 : inte^(x^(2))dx=e^(x^(2))+c

int(e^x+1/(e^x))^2dx

STATEMENT-1 : If int(2^(x))/(sqrt(1-4^(x)))=ksin^(-1)(2^(x)) , then k equals (1)/(log2) . STATEMENT-2 : If intf(x)dx=-f(x)+c , then f(log_(e)2)=(1)/(2) STATEMENT-3 : int(e^(x))/(sqrt(1+e^(x)))dx=-2sqrt(1+e^(x))+c

Evaluate: int(e^x)/(1+e^(2x))dx