Home
Class 12
PHYSICS
A force vec(F)=(2hat(i)+3hat(j)-5hat(k))...

A force `vec(F)=(2hat(i)+3hat(j)-5hat(k))N` acts at a point `vec(r )_(1)=(2hat(i)+4hat(j)+7hat(k))m`. The torque of the force about the point `vec(r )_(2)=(hat(i)+2hat(j)+3hat(k))m` is

A

`(17hat(j)+5hat(k)-3hat(i))Nm`

B

`(2hat(j)+4hat(j)-6hat(k))Nm`

C

`(12hat(i)-5hat(j)+7hat(k))Nm`

D

`-(-13hat(j)+22hat(i)+hat(k))Nm`

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque of the force \(\vec{F} = (2\hat{i} + 3\hat{j} - 5\hat{k}) \, \text{N}\) about the point \(\vec{r}_2 = (\hat{i} + 2\hat{j} + 3\hat{k}) \, \text{m}\), we will follow these steps: ### Step 1: Determine the position vector \(\vec{r}\) The torque \(\vec{\tau}\) is given by the equation: \[ \vec{\tau} = \vec{r} \times \vec{F} \] where \(\vec{r}\) is the position vector from the point \(\vec{r}_2\) to the point \(\vec{r}_1\) where the force is applied. First, we calculate \(\vec{r}\): \[ \vec{r} = \vec{r}_1 - \vec{r}_2 \] Given: \[ \vec{r}_1 = (2\hat{i} + 4\hat{j} + 7\hat{k}) \, \text{m} \] \[ \vec{r}_2 = (\hat{i} + 2\hat{j} + 3\hat{k}) \, \text{m} \] Now, subtract \(\vec{r}_2\) from \(\vec{r}_1\): \[ \vec{r} = (2\hat{i} + 4\hat{j} + 7\hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = (2 - 1)\hat{i} + (4 - 2)\hat{j} + (7 - 3)\hat{k} \] \[ \vec{r} = (1\hat{i} + 2\hat{j} + 4\hat{k}) \, \text{m} \] ### Step 2: Calculate the torque \(\vec{\tau}\) Now we can calculate the torque using the cross product: \[ \vec{\tau} = \vec{r} \times \vec{F} \] Substituting the values: \[ \vec{F} = (2\hat{i} + 3\hat{j} - 5\hat{k}) \, \text{N} \] We set up the determinant for the cross product: \[ \vec{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 4 \\ 2 & 3 & -5 \end{vmatrix} \] ### Step 3: Calculate the determinant Calculating the determinant: \[ \vec{\tau} = \hat{i} \begin{vmatrix} 2 & 4 \\ 3 & -5 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} 2 & 4 \\ 3 & -5 \end{vmatrix} = (2)(-5) - (4)(3) = -10 - 12 = -22 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} = (1)(-5) - (4)(2) = -5 - 8 = -13 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = (1)(3) - (2)(2) = 3 - 4 = -1 \] Putting it all together: \[ \vec{\tau} = -22\hat{i} + 13\hat{j} - 1\hat{k} \] ### Step 4: Final expression for torque Thus, the torque is: \[ \vec{\tau} = -22\hat{i} + 13\hat{j} - 1\hat{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

A force vec(F) = (2 hat(i) + 3 hat(j) + 4 hat(k)) N is applied to a point having position vector vec(r) = (3 hat(i) + 2 hat(j) + hat(k)) m. Find the torque due to the force about the axis passing through origin.

The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(r)=7hat(i)+3hat(j)+hat(k) is ______________?

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

Find the torque of the force vec(F)=(2hat(i)-3hat(j)+4hat(k)) N acting at the point vec(r )=(3hat(i)=2hat(j)+3hat(k)) m about the origion.

If vec(F ) = (60 hat(i) + 15 hat(j) - 3 hat(k)) N and vec(V) = (2 hat(i) - 4 hat(j) + 5 hat(k)) m/s, then instantaneous power is:

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

The compenent of vec(A)=hat(i)+hat(j)+5hat(k) perpendicular to vec(B)=3hat(i)+4hat(j) is

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.