Home
Class 12
CHEMISTRY
The value of Delta H^(@) in kJ for the r...

The value of `Delta H^(@)` in kJ for the reaction will be `CS_(2)(l) + 4NOCl(g) rightarrow CCCl_(4)(l) + 2SO_(2)(g) + 2N_(2)(g)` if
`Delta H_(t)^(@)(CS_(2)) = -X`
`DeltaH_(l)^(@)(NOCl) = -y`
`Delta H_(l)^(@)(CCCL_(4)) = + z`
`Delta H_(l)^(@)(SO_(2)) = - r`

A

` x + 4y -z - 2r`

B

`r + z+ 4y -x`

C

`2r + z +4y + x`

D

`x + 4y + z -2r`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\Delta H^\circ\) for the reaction: \[ \text{CS}_2(l) + 4\text{NOCl}(g) \rightarrow \text{CCl}_4(l) + 2\text{SO}_2(g) + 2\text{N}_2(g) \] we will use the standard enthalpy of formation values provided: - \(\Delta H_f^\circ(\text{CS}_2) = -X\) - \(\Delta H_f^\circ(\text{NOCl}) = -y\) - \(\Delta H_f^\circ(\text{CCl}_4) = +z\) - \(\Delta H_f^\circ(\text{SO}_2) = -r\) - \(\Delta H_f^\circ(\text{N}_2) = 0\) (since it is in its standard state) ### Step-by-Step Solution: 1. **Write the expression for \(\Delta H^\circ\) of the reaction:** \[ \Delta H^\circ_{\text{reaction}} = \sum \Delta H_f^\circ \text{(products)} - \sum \Delta H_f^\circ \text{(reactants)} \] 2. **Identify the products and their enthalpies:** - For \(\text{CCl}_4\), the enthalpy of formation is \(+z\). - For \(2\text{SO}_2\), the total enthalpy of formation is \(2 \times (-r) = -2r\). - For \(2\text{N}_2\), the enthalpy of formation is \(2 \times 0 = 0\). Thus, the total enthalpy of formation for the products is: \[ \Delta H_f^\circ(\text{products}) = z - 2r + 0 = z - 2r \] 3. **Identify the reactants and their enthalpies:** - For \(\text{CS}_2\), the enthalpy of formation is \(-X\). - For \(4\text{NOCl}\), the total enthalpy of formation is \(4 \times (-y) = -4y\). Thus, the total enthalpy of formation for the reactants is: \[ \Delta H_f^\circ(\text{reactants}) = -X - 4y \] 4. **Combine the expressions:** Now, substitute the values into the expression for \(\Delta H^\circ_{\text{reaction}}\): \[ \Delta H^\circ_{\text{reaction}} = (z - 2r) - (-X - 4y) \] Simplifying this gives: \[ \Delta H^\circ_{\text{reaction}} = z - 2r + X + 4y \] 5. **Final expression:** Therefore, the final expression for \(\Delta H^\circ\) is: \[ \Delta H^\circ_{\text{reaction}} = z - 2r + X + 4y \] ### Final Answer: \[ \Delta H^\circ = z - 2r + X + 4y \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THERMODYNAMICS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (Section - C) Previous Years Questions|60 Videos
  • THERMODYNAMICS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (Section -D) Assertion-Reason Type Questions|15 Videos
  • THERMODYNAMICS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (Section - A) Objective Type Questions|55 Videos
  • THE SOLID STATE

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D) (ASSERTION-REASON TYPE QUESTION)|20 Videos

Similar Questions

Explore conceptually related problems

For the reaction C_2H_(5)OH(l) + 3 O_(2)(g) rightarrow 2CO_(2)(g) + 3 H_(2)O(l) , which one is true ?

For the reaction PCI _(3) (g) + CI_(2)(g) rightarrow PCI_(5)(g), Delta H = -x kJ If the Delta H_(f)^(@)"PCI"_(3) is -y kJ, what is Delta H_(f)^(@)PCI_(5) ?

Calorific value of ethane, in k J/g if for the reaction 2C_(2)H_(6) + 7O_(2) rightarrow 4CO_(2) + 6 H_(2)O, Delta H = -745.6 kcal

What is the unit of K_(p) for the reaction ? CS_(2)(g)+4H_(2)(g)hArrCH_(4)(g)+2H_(2)S(g)

For the reaction C_(3)H_(8)(g) + 5 O_(2)(g) rightarrow 3CO_(2)(g) + 4 H_(2)O(l) at constant temperature , DeltaH - Delta E is

In the reaction 2H_(2)(g) + O_(2)(g) rarr 2H_(2)O (l), " "Delta H = - xkJ

For the reaction : C_(2)H_(5)OH(l)+3O_(2)(g)rarr2CO_(2)(g)+3H_(2)O(g) if Delta U^(@)= -1373 kJ mol^(-1) at 298 K . Calculate Delta H^(@)

Calculate delta H° for the reaction , CaC_2(s) + 2H_2O(l) rarr Ca(OH)_2(s) + C_2H_2(g) , delta H°_(f(CaC_2)) = -62.0 kj/mol , delta H°_(f(H_2O)) = -286.0 kj/mol , delta H°_(f(CaOH_2)) = -986.0 kj/mol , delta H°_(f(C_2H_2)) = -227.0 kj/mol ,

Calculate in kJ for the following reaction : C(g) + O_(2)(g) rarr CO_(2)(g) Given that, H_(2)O(g) + C(g) + H_(2)(g) , Delta H = +131 kJ CO(g) + 1/2 O_(2)(g) rarr CO_(2)(g), " " Delta H = -242 kJ H_(2)(g) + 1/2 O_(2)(g) rarr H_(2)O(g), " "DeltaH = -242 kJ

Calculate the standard Gibbs free energy change from the free energies of formation data for the following reaction: C_(6)H_(6)(l) +(15)/(2)O_(2)(g) rarr 6CO_(2)(g) +3H_(2)O(g) Given that Delta_(f)G^(Theta) =[C_(6)H_(6)(l)] = 172.8 kJ mol^(-1) Delta_(f)G^(Theta)[CO_(2)(g)] =- 394.4 kJ mol^(-1) Delta_(f)G^(Theta) [H_(2)O(g)] =- 228.6 kJ mol^(-1)