Home
Class 12
PHYSICS
If y = log(10) x, then the value of (dy)...

If `y = log_(10) x`, then the value of `(dy)/(dx)` is

A

`1/x`

B

`x/(log_e 10)`

C

`(log_(10)e)/x`

D

`(log_e 10)/x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log_{10} x \), we can follow these steps: ### Step 1: Rewrite the logarithm in terms of natural logarithm Using the change of base formula for logarithms, we can express \( y \) as: \[ y = \log_{10} x = \frac{\ln x}{\ln 10} \] where \( \ln \) denotes the natural logarithm. ### Step 2: Differentiate with respect to \( x \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}\left(\frac{\ln x}{\ln 10}\right) \] Since \( \ln 10 \) is a constant, we can take it out of the derivative: \[ \frac{dy}{dx} = \frac{1}{\ln 10} \cdot \frac{d}{dx}(\ln x) \] ### Step 3: Differentiate \( \ln x \) The derivative of \( \ln x \) is: \[ \frac{d}{dx}(\ln x) = \frac{1}{x} \] Thus, substituting this back into our equation gives: \[ \frac{dy}{dx} = \frac{1}{\ln 10} \cdot \frac{1}{x} \] ### Step 4: Final expression for the derivative Therefore, we can express the derivative as: \[ \frac{dy}{dx} = \frac{1}{x \ln 10} \] ### Conclusion The final result for the derivative of \( y = \log_{10} x \) is: \[ \frac{dy}{dx} = \frac{1}{x \ln 10} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Mock test 19

    AAKASH INSTITUTE ENGLISH|Exercise EXAMPLE|13 Videos
  • MOCK TEST 20

    AAKASH INSTITUTE ENGLISH|Exercise EXAMPLE|19 Videos

Similar Questions

Explore conceptually related problems

If y=e^(1+log_(e)x) , then the value of (dy)/(dx) is equal to

If x^(y). y^(x)=16 , then the value of (dy)/(dx) at (2, 2) is

if y^x-x^y=1 then the value of (dy)/(dx) at x=1 is

1.If y = (log x)3 then dy/dx=

if y=(xsinx)/(log_(e)x), then find (dy)/(dx)

If x=y log(xy) , then prove that (dy)/(dx) = (y (x-y))/(x(x+y)) .

If y=log_(x^(2)+4)(7x^(2)-5x+1) , then (dy)/(dx) is equal to

If y="log"_(2)"log"_(2)(x) , then (dy)/(dx) is equal to

If Y=x^(2)+sin^(-1)x+log_(e)x, then find (dy)/(dx)

if y=log_(sinx) tanx then ((dy)/(dx)) _(pi/4) is