Home
Class 11
PHYSICS
Evaluate :- int(0)^(pi//2)(sinx+cosx)d...

Evaluate `:-`
`int_(0)^(pi//2)(sinx+cosx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) \, dx, \] we can break it down into two separate integrals: \[ I = \int_{0}^{\frac{\pi}{2}} \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \cos x \, dx. \] ### Step 1: Evaluate the integral of \(\sin x\) The integral of \(\sin x\) is: \[ \int \sin x \, dx = -\cos x. \] Now we need to evaluate this from \(0\) to \(\frac{\pi}{2}\): \[ \int_{0}^{\frac{\pi}{2}} \sin x \, dx = \left[-\cos x\right]_{0}^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) - (-\cos(0)). \] ### Step 2: Substitute the limits Now we substitute the limits: \[ -\cos\left(\frac{\pi}{2}\right) + \cos(0) = -0 + 1 = 1. \] ### Step 3: Evaluate the integral of \(\cos x\) The integral of \(\cos x\) is: \[ \int \cos x \, dx = \sin x. \] Now we evaluate this from \(0\) to \(\frac{\pi}{2}\): \[ \int_{0}^{\frac{\pi}{2}} \cos x \, dx = \left[\sin x\right]_{0}^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin(0). \] ### Step 4: Substitute the limits Now we substitute the limits: \[ \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1. \] ### Step 5: Combine the results Now we can combine the results from both integrals: \[ I = \int_{0}^{\frac{\pi}{2}} \sin x \, dx + \int_{0}^{\frac{\pi}{2}} \cos x \, dx = 1 + 1 = 2. \] Thus, the value of the integral is \[ \boxed{2}. \]

To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) \, dx, \] we can break it down into two separate integrals: ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

Evaluate int_(0)^(pi//2)(sinx-cosx)/(1+sinx*cosx)dx

Evaluate: int_(-pi//2)^(pi//2)log(sinx+cosx)dx

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

Evaluate: int_0^(pi/2) sin^2x/(sinx+cosx)dx

Evaluate: int_0^(pi//2)x/(sinx+cosx)dx

Evaluate: int_0^(pi/2)(x+sinx)/(1+cosx) dx

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

Evaluate: int_0^(pi/2) cos^2x/(2+sinx+cosx)dx

Evaluate : int_0^(pi//2)sinx\ dx