Home
Class 12
CHEMISTRY
Greenhouse gas CO(2) can be converted to...

Greenhouse gas `CO_(2)` can be converted to `CO(g)` by the following reaction
`CO_(2)(g)+H_(2)(g) rarr CO+H_(2)O(g)` , termed as water gas reaction.
Calculate `DeltaG` for the reaction at 1000K `(DeltaH_(1000K)=35040 J "mol"^(-1) DeltaS_(1000K) =32.11 J "mol"^(-1)K^(1))`.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the change in Gibbs free energy (ΔG) for the reaction at 1000 K, we will use the following formula: \[ \Delta G = \Delta H - T \Delta S \] Where: - ΔG = change in Gibbs free energy - ΔH = change in enthalpy - T = temperature in Kelvin - ΔS = change in entropy ### Step 1: Identify the given values From the problem statement, we have: - ΔH (at 1000 K) = 35040 J/mol - ΔS (at 1000 K) = 32.11 J/mol·K - T = 1000 K ### Step 2: Substitute the values into the formula Now, we substitute the values into the Gibbs free energy equation: \[ \Delta G = 35040 \, \text{J/mol} - (1000 \, \text{K} \times 32.11 \, \text{J/mol·K}) \] ### Step 3: Calculate TΔS First, we calculate \(T \Delta S\): \[ T \Delta S = 1000 \, \text{K} \times 32.11 \, \text{J/mol·K} = 32110 \, \text{J/mol} \] ### Step 4: Complete the calculation for ΔG Now, we can substitute this value back into the equation for ΔG: \[ \Delta G = 35040 \, \text{J/mol} - 32110 \, \text{J/mol} \] \[ \Delta G = 2930 \, \text{J/mol} \] ### Final Answer Thus, the change in Gibbs free energy (ΔG) at 1000 K for the reaction is: \[ \Delta G = 2930 \, \text{J/mol} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THERMODYNAMICS

    RESONANCE ENGLISH|Exercise exercise-3 part-III Advanced level Solutions (STAGE-I)|6 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise CHEMISTRY|50 Videos

Similar Questions

Explore conceptually related problems

Greenhouse gas CO_(2) can be converted to CO(g) by the following reaction CO_(2)(g)+H_(2)(g) rarr CO_(2)+H_(2)O(g) , termed as water gas reaction. Calculate DeltaH at 1400 K using the given data for 1000K , assuming the C_(p)^(@) values remain constant in the given temoerature range. DeltaH=35040 J"mol"^(-1), C_(p)^(@)(CO_(2))=(42.31 + 10.09 xx 1^(-3)T) J "mol"^(-1)K_(1) C_(P)^(@)(H_(2))=(27.40 + 3.20 xx 10^(-3)T) J"mol"^(-1)K_(1) C_(P)^(@)(CO)=(28.34+ 4.14 xx 10^(-3)T)J"mol"^(-1)K^(-1) C_(P)^(@)(H_(2)O)=(30.09 + 10.67 xx 10^(-3)T)J"mol^(-1)K^(-1)

Greenhouse gas CO_(2) can be converted to CO(g) by the following reaction CO_(2)(g)+H_(2)(g) rarr CO_(2)+H_(2)O(g) , termed as water gas reaction. A mixture of gases containing 35 vol% of H_(2) ,45 vol.% of CO and 20 vol. % H_(2)O is heated to 1000K . What is the composition of the mixture at equilibrium?

Knowledge Check

  • Consider the following reaction : CO_((g))+(1)/(2)O_(2(g)) rarr CO_(2(g)) How are Delta U and DeltaH related for the reaction ?

    A
    (a) `DeltaH = DeltaU-0.5RT`
    B
    (b) `DeltaH=DeltaU-RT`
    C
    (c) `DeltaH=DeltaU+0.5RT`
    D
    (d) `DeltaH=DeltaU-1.5RT`
  • Similar Questions

    Explore conceptually related problems

    Greenhouse gas CO_(2) can be converted to CO(g) by the following reaction CO_(2)(g)+H_(2)(g) rarr CO_(2)+H_(2)O(g) , termed as water gas reaction. Based on your answer in 3,4 mark the correct box: (a) K_(p) will increase with increase in temperature (b) K_(p) will not change with increase in temperature (c) K_(p) will decrease with increase in temperature

    K_(p)//K_(c) for the reaction CO(g)+1/2 O_(2)(g) hArr CO_(2)(g) is

    K_(p)//K_(c) for the reaction CO(g)+1/2 O_(2)(g) hArr CO_(2)(g) is

    For the reaction CO(g)+(1)/(2) O_(2)(g) hArr CO_(2)(g),K_(p)//K_(c) is

    For the following reaction in gaseous phase CO(g)+1/2O_(2) rarr CO_(2) K_(P)/K_(c) is

    (K_(p))/(K_(c)) for following reaction will be CO_((g))+(1)/(2)O_(2(g))rarrCO_(2(g))

    In the reaction, CO_(2)(g)+H_(2)(g)toCO(g)+H_(2)O(g)," "DeltaH=2.8 kJ DeltaH represents :