Home
Class 12
MATHS
The value of int(0)^(1)({2x}-1)({3x}-1)d...

The value of `int_(0)^(1)({2x}-1)({3x}-1)dx`, (where {} denotes fractional part opf x) is equal to :

A

a.`19/36`

B

b.`19/144`

C

c.`19/72`

D

d.`19/18`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \{2x - 1\} \{3x - 1\} \, dx \), where \(\{x\}\) denotes the fractional part of \(x\), we will break the integral into intervals where the expressions inside the fractional parts behave consistently. ### Step 1: Understanding the fractional part The fractional part of a number \(y\) is defined as: \[ \{y\} = y - \lfloor y \rfloor \] where \(\lfloor y \rfloor\) is the greatest integer less than or equal to \(y\). ### Step 2: Determine the intervals We need to find the intervals where \(2x - 1\) and \(3x - 1\) change their integer parts: - \(2x - 1 = 0\) when \(x = \frac{1}{2}\) - \(3x - 1 = 0\) when \(x = \frac{1}{3}\) Thus, we will break the integral into three parts: 1. From \(0\) to \(\frac{1}{3}\) 2. From \(\frac{1}{3}\) to \(\frac{1}{2}\) 3. From \(\frac{1}{2}\) to \(1\) ### Step 3: Evaluate the integral on each interval **Interval 1: \(x \in [0, \frac{1}{3}]\)** - Here, \(2x < 1\) and \(3x < 1\), so: \[ \{2x - 1\} = 2x - 1, \quad \{3x - 1\} = 3x - 1 \] - The integral becomes: \[ I_1 = \int_{0}^{\frac{1}{3}} (2x - 1)(3x - 1) \, dx \] **Interval 2: \(x \in [\frac{1}{3}, \frac{1}{2}]\)** - Here, \(2x < 1\) and \(3x \geq 1\), so: \[ \{2x - 1\} = 2x - 1, \quad \{3x - 1\} = 3x - 1 - 1 = 3x - 2 \] - The integral becomes: \[ I_2 = \int_{\frac{1}{3}}^{\frac{1}{2}} (2x - 1)(3x - 2) \, dx \] **Interval 3: \(x \in [\frac{1}{2}, 1]\)** - Here, \(2x \geq 1\) and \(3x \geq 1\), so: \[ \{2x - 1\} = 2x - 1 - 1 = 2x - 2, \quad \{3x - 1\} = 3x - 1 - 1 = 3x - 2 \] - The integral becomes: \[ I_3 = \int_{\frac{1}{2}}^{1} (2x - 2)(3x - 2) \, dx \] ### Step 4: Calculate each integral **Calculating \(I_1\):** \[ I_1 = \int_{0}^{\frac{1}{3}} (2x - 1)(3x - 1) \, dx = \int_{0}^{\frac{1}{3}} (6x^2 - 5x + 1) \, dx \] Calculating: \[ = \left[ 2x^3 - \frac{5}{2}x^2 + x \right]_{0}^{\frac{1}{3}} = \left( 2\left(\frac{1}{3}\right)^3 - \frac{5}{2}\left(\frac{1}{3}\right)^2 + \frac{1}{3} \right) = \frac{2}{27} - \frac{5}{18} + \frac{1}{3} \] **Calculating \(I_2\):** \[ I_2 = \int_{\frac{1}{3}}^{\frac{1}{2}} (2x - 1)(3x - 2) \, dx = \int_{\frac{1}{3}}^{\frac{1}{2}} (6x^2 - 7x + 2) \, dx \] Calculating: \[ = \left[ 2x^3 - \frac{7}{2}x^2 + 2x \right]_{\frac{1}{3}}^{\frac{1}{2}} \] **Calculating \(I_3\):** \[ I_3 = \int_{\frac{1}{2}}^{1} (2x - 2)(3x - 2) \, dx = \int_{\frac{1}{2}}^{1} (6x^2 - 10x + 4) \, dx \] Calculating: \[ = \left[ 2x^3 - 5x^2 + 4x \right]_{\frac{1}{2}}^{1} \] ### Step 5: Combine the results Finally, sum \(I_1\), \(I_2\), and \(I_3\) to get the total value of the integral.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - II|17 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(4) {x} dx (where , {.} denotes fractional part of x) is equal to

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

lim_(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to:

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

The value of int_(0)^(1) (1)/(2x-3)dx is

Find the value of int_(0)^(x){t}dt,x inR^(+) , here {.} denotes fractional part of 'x'.

The value of lim_(xto0)sin^(-1){x} (where {.} denotes fractional part of x) is

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

Evaluate int_(-3)^(5) e^({x})dx , where {.} denotes the fractional part functions.