Home
Class 12
MATHS
Evaluate int(0)^(pi)sqrt((cosx+cos2x+c...

Evaluate
`int_(0)^(pi)sqrt((cosx+cos2x+cos3x)^(2)+(sinx+sin2x+sin3x)^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\pi} \sqrt{(\cos x + \cos 2x + \cos 3x)^2 + (\sin x + \sin 2x + \sin 3x)^2} \, dx, \] we can follow these steps: ### Step 1: Simplify the expression inside the square root We can use the identities for the sum of cosines and sines. The sum of cosines can be simplified as follows: \[ \cos x + \cos 2x + \cos 3x = \cos x + \cos 3x + \cos 2x. \] Using the formula for the sum of cosines: \[ \cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right), \] we can first combine \(\cos x\) and \(\cos 3x\): \[ \cos x + \cos 3x = 2 \cos\left(2x\right) \cos\left(x\right). \] Thus, \[ \cos x + \cos 2x + \cos 3x = 2 \cos(2x) \cos(x) + \cos(2x) = \cos(2x)(2 \cos x + 1). \] ### Step 2: Simplify the sine part Similarly, for the sine terms: \[ \sin x + \sin 2x + \sin 3x = \sin x + \sin 3x + \sin 2x. \] Using the sine addition formula: \[ \sin a + \sin b = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right), \] we combine \(\sin x\) and \(\sin 3x\): \[ \sin x + \sin 3x = 2 \sin\left(2x\right) \cos\left(x\right). \] Thus, \[ \sin x + \sin 2x + \sin 3x = 2 \sin(2x) \cos(x) + \sin(2x) = \sin(2x)(2 \cos x + 1). \] ### Step 3: Substitute back into the integral Now substituting back into the integral: \[ I = \int_{0}^{\pi} \sqrt{(\cos(2x)(2 \cos x + 1))^2 + (\sin(2x)(2 \cos x + 1))^2} \, dx. \] Factoring out \((2 \cos x + 1)^2\): \[ I = \int_{0}^{\pi} |2 \cos x + 1| \sqrt{\cos^2(2x) + \sin^2(2x)} \, dx. \] Since \(\sqrt{\cos^2(2x) + \sin^2(2x)} = 1\), we have: \[ I = \int_{0}^{\pi} |2 \cos x + 1| \, dx. \] ### Step 4: Determine where \(2 \cos x + 1\) is positive or negative We set \(2 \cos x + 1 = 0\): \[ \cos x = -\frac{1}{2} \implies x = \frac{2\pi}{3}. \] Thus, we split the integral at \(x = \frac{2\pi}{3}\): \[ I = \int_{0}^{\frac{2\pi}{3}} (2 \cos x + 1) \, dx + \int_{\frac{2\pi}{3}}^{\pi} -(2 \cos x + 1) \, dx. \] ### Step 5: Evaluate the integrals 1. **First Integral**: \[ \int_{0}^{\frac{2\pi}{3}} (2 \cos x + 1) \, dx = [2 \sin x + x]_{0}^{\frac{2\pi}{3}} = 2 \sin\left(\frac{2\pi}{3}\right) + \frac{2\pi}{3} - (0) = 2 \cdot \frac{\sqrt{3}}{2} + \frac{2\pi}{3} = \sqrt{3} + \frac{2\pi}{3}. \] 2. **Second Integral**: \[ \int_{\frac{2\pi}{3}}^{\pi} -(2 \cos x + 1) \, dx = -\left[2 \sin x + x\right]_{\frac{2\pi}{3}}^{\pi} = -\left[(2 \sin \pi + \pi) - (2 \sin\left(\frac{2\pi}{3}\right) + \frac{2\pi}{3})\right]. \] Since \(\sin \pi = 0\) and \(\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}\): \[ = -\left[\pi - \left(\sqrt{3} + \frac{2\pi}{3}\right)\right] = -\left[\pi - \sqrt{3} - \frac{2\pi}{3}\right] = -\left[\frac{\pi}{3} - \sqrt{3}\right] = \sqrt{3} - \frac{\pi}{3}. \] ### Step 6: Combine the results Combining both parts: \[ I = \left(\sqrt{3} + \frac{2\pi}{3}\right) + \left(\sqrt{3} - \frac{\pi}{3}\right) = 2\sqrt{3} + \frac{2\pi}{3} - \frac{\pi}{3} = 2\sqrt{3} + \frac{\pi}{3}. \] ### Final Result Thus, the value of the integral is: \[ \boxed{2\sqrt{3} + \frac{\pi}{3}}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - II|25 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//2)^(pi//2) sqrt(cosx-cos^3x) dx

Evaluate : int_(0)^(pi/2)(sin^2x-cos^2x)/(sin^3x+cos^3x)dx

Evaluate: int_0^(pi//2)(cos^2x)/(cos^2x+4sin^2x)dx

Let P(x)=sqrt(( cosx +cos2x+cos3x)^2+ (sin x + sin 2x+sin3x)^2) then P(x) is equal to

Evaluate int_(0)^(pi//2) (cos^2 x)/(1+sin x cos x)dx .

int_(0)^(pi) x sin x cos^(2)x\ dx

Evaluate : int_0^(pi/2)(sin^2x)/(sin x+cos x)dx

int_(0)^(pi/2) (cos^(2)x dx)/(cos^(2)x+4 sin^(2)x)

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

int_(0)^(pi//2) x sin x cos x dx