Home
Class 12
MATHS
If F(x)=(sinpi[x])/({x}) then F(x) is (w...

If `F(x)=(sinpi[x])/({x})` then `F(x)` is (where {.} denotes fractional part function and [.] denotes greatest integer function and `sgn(x)` is a signum function)

A

periodic with fundamental period 1

B

even

C

range is singleton

D

indentical to `sgn(sgn({x})/(sqrt({x})))-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( F(x) = \frac{\sin(\pi [x])}{\{x\}} \), where \([x]\) is the greatest integer function (floor function) and \(\{x\}\) is the fractional part function. ### Step-by-Step Solution: 1. **Understanding the Components**: - The greatest integer function \([x]\) gives the largest integer less than or equal to \(x\). - The fractional part function \(\{x\} = x - [x]\) gives the non-integer part of \(x\). - The sine function \(\sin(\pi n) = 0\) for any integer \(n\). 2. **Evaluating \(F(x)\) at Integer Values**: - If \(x\) is an integer, then \([x] = x\) and \(\{x\} = 0\). - Thus, \(F(x) = \frac{\sin(\pi x)}{0}\) which is undefined. 3. **Evaluating \(F(x)\) at Non-Integer Values**: - For non-integer values of \(x\), \([x]\) is the integer part of \(x\) and \(\{x\}\) is positive (since it is the non-integer part). - Therefore, \(F(x) = \frac{\sin(\pi [x])}{\{x\}}\). 4. **Analyzing the Sine Function**: - For \(x\) in the interval \([n, n+1)\) where \(n\) is an integer, \([x] = n\). - Thus, \(F(x) = \frac{\sin(\pi n)}{\{x\}} = \frac{0}{\{x\}} = 0\) since \(\sin(\pi n) = 0\). 5. **Conclusion on the Function**: - Since \(F(x) = 0\) for all non-integer \(x\) and is undefined for integer \(x\), the function \(F(x)\) is essentially zero for all non-integers. - The **domain** of \(F(x)\) is all real numbers except integers, i.e., \( \mathbb{R} \setminus \mathbb{Z} \). - The **range** of \(F(x)\) is just \(\{0\}\) (singleton set). 6. **Identifying the Nature of \(F(x)\)**: - \(F(x)\) is not periodic since it is constantly zero for non-integer values. - \(F(x)\) is an even function because \(F(-x) = F(x) = 0\) for all non-integer \(x\). - \(F(x)\) is not identical to any other function since it has a specific domain and range. ### Final Answer: - The function \(F(x)\) is an **even function** and has a range of \(\{0\}\) (singleton).

To solve the problem, we need to analyze the function \( F(x) = \frac{\sin(\pi [x])}{\{x\}} \), where \([x]\) is the greatest integer function (floor function) and \(\{x\}\) is the fractional part function. ### Step-by-Step Solution: 1. **Understanding the Components**: - The greatest integer function \([x]\) gives the largest integer less than or equal to \(x\). - The fractional part function \(\{x\} = x - [x]\) gives the non-integer part of \(x\). - The sine function \(\sin(\pi n) = 0\) for any integer \(n\). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE ADVANCED|12 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Draw the graph of f(x)=x+[x], [.] denotes greatest integer function.

draw the graph of f(x)=x+[x] , [.] denotes greatest integer function.

The value of int({[x]})dx where {.} and [.] denotes the fractional part of x and greatest integer function equals

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

If f(x) = {x} + { x + 1 } + {x + 2 }.........{x + 99), then the value of [f(sqrt2)] is, where (.) denotes fractional part function & [.] denotes the greatest integer function

If f(x)=[x]tan(πx) then f ′(k ^+ ) is equal to (where k is some integer and [.] denotes greatest integer function)

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

The function f(x)=[x]+1/2,x!inI is a/an (wher [.] denotes greatest integer function)

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-MCQ_TYPE
  1. If f(x)={(x^(2),xle1),(1-x,xgt1):} & composite function h(x)=|f(x)|+f(...

    Text Solution

    |

  2. Let f(x)={0 for x=0 x^2 sin (pi/x) for -1 < x < 1(x != 0), then : x |...

    Text Solution

    |

  3. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  4. If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the great...

    Text Solution

    |

  5. If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] deno...

    Text Solution

    |

  6. Identify the statement which is incorrect

    Text Solution

    |

  7. If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional pa...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Which of the following pairs of function are identical?

    Text Solution

    |

  10. Q. if sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2, then

    Text Solution

    |

  11. If x=cos e c[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[co...

    Text Solution

    |

  12. If alpha satisfies the inequation x^2 - x - 2 > 0, then a value exists...

    Text Solution

    |

  13. Find the range of each of the following function: f(x)=ln(sin^(-1)x)

    Text Solution

    |

  14. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  15. The expression 1/(sqrt(2)){(sincot^(- 1)costan^(- 1)t)/(costan^(- 1)si...

    Text Solution

    |

  16. If 0< x< 1,then tan^(-1)(sqrt(1-x^2)/(1+x)) is equal to

    Text Solution

    |

  17. If f(x) = cos^(-1)x + cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then :

    Text Solution

    |

  18. The sum underset(n=1) overset(infty) Sigma tan^(-1) ((4n)/( n^(4) - 2n...

    Text Solution

    |

  19. If sin^2 (2 cos^-1 (tan x)) = 1 then x may be

    Text Solution

    |

  20. If sin^-1 x + 2 cot^-1 (y^2-2y) = 2pi, then

    Text Solution

    |