Home
Class 12
MATHS
int (2) ^(3) x ^(4) dx =...

`int _(2) ^(3) x ^(4) dx =`

A

`1/2`

B

`5/2`

C

`(5)/(211)`

D

`(211)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{2}^{3} x^{4} \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{2}^{3} x^{4} \, dx \] ### Step 2: Apply the power rule of integration According to the power rule of integration, the integral of \( x^n \) is given by: \[ \int x^{n} \, dx = \frac{x^{n+1}}{n+1} + C \] For our case, \( n = 4 \): \[ \int x^{4} \, dx = \frac{x^{5}}{5} + C \] ### Step 3: Evaluate the definite integral Now we will evaluate the definite integral from 2 to 3: \[ I = \left[ \frac{x^{5}}{5} \right]_{2}^{3} \] This means we will substitute the upper limit (3) and the lower limit (2) into the expression: \[ I = \frac{3^{5}}{5} - \frac{2^{5}}{5} \] ### Step 4: Calculate \( 3^{5} \) and \( 2^{5} \) Now we calculate \( 3^{5} \) and \( 2^{5} \): \[ 3^{5} = 243 \quad \text{and} \quad 2^{5} = 32 \] ### Step 5: Substitute the values back into the integral Substituting these values back into our expression for \( I \): \[ I = \frac{243}{5} - \frac{32}{5} = \frac{243 - 32}{5} = \frac{211}{5} \] ### Final Answer Thus, the value of the integral \( \int_{2}^{3} x^{4} \, dx \) is: \[ \frac{211}{5} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (FILL IN THE BLANK)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (TRUE OR FALSE)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (4 MARKS EACH)|10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int 2^(3x+4) dx

int(x^(2)+x^(3)+x^(4))dx

int(2x^(3))/(x^(4)+1)dx

int (2^(3x) + 4) dx

Evaluate int_(0)^(3)(x^(2)+4)dx as the limit of a sum

int ((1 + 2x) ^ (3)) / (x ^ (4)) dx

Evaluate int_(0)^(3)(x^(2)-4)dx

int (x^2 - 3x + 4) dx

int(x^(3))/((x^(2)-4))dx

int(x^(3))/((x+2)^(4))dx