Home
Class 12
MATHS
The adjoint matrix of [(3,-3,4),(2,-3,4)...

The adjoint matrix of `[(3,-3,4),(2,-3,4),(0,-1,1)]` is

A

`[(4,8,3),(2,1,6),(0,2,1)]`

B

`[(1,-1,0),(-2,3,-4),(-2,3,-3)]`

C

`[(11,9,3),(1,2,8),(6,9,1)]`

D

`[(1,-2,1),(-1,3,3),(-2,3,-3)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Find the Matrix of Minors The first step in finding the adjoint is to calculate the matrix of minors. The minor of an element in a matrix is the determinant of the submatrix that remains after removing the row and column of that element. 1. **Minor of \( a_{11} = 3 \)**: \[ M_{11} = \begin{vmatrix} -3 & 4 \\ -1 & 1 \end{vmatrix} = (-3)(1) - (4)(-1) = -3 + 4 = 1 \] 2. **Minor of \( a_{12} = -3 \)**: \[ M_{12} = \begin{vmatrix} 2 & 4 \\ 0 & 1 \end{vmatrix} = (2)(1) - (4)(0) = 2 - 0 = 2 \] 3. **Minor of \( a_{13} = 4 \)**: \[ M_{13} = \begin{vmatrix} 2 & -3 \\ 0 & -1 \end{vmatrix} = (2)(-1) - (-3)(0) = -2 - 0 = -2 \] 4. **Minor of \( a_{21} = 2 \)**: \[ M_{21} = \begin{vmatrix} -3 & 4 \\ -1 & 1 \end{vmatrix} = (-3)(1) - (4)(-1) = -3 + 4 = 1 \] 5. **Minor of \( a_{22} = -3 \)**: \[ M_{22} = \begin{vmatrix} 3 & 4 \\ 0 & 1 \end{vmatrix} = (3)(1) - (4)(0) = 3 - 0 = 3 \] 6. **Minor of \( a_{23} = 4 \)**: \[ M_{23} = \begin{vmatrix} 3 & -3 \\ 0 & -1 \end{vmatrix} = (3)(-1) - (-3)(0) = -3 - 0 = -3 \] 7. **Minor of \( a_{31} = 0 \)**: \[ M_{31} = \begin{vmatrix} -3 & 4 \\ -3 & 4 \end{vmatrix} = (-3)(4) - (4)(-3) = -12 + 12 = 0 \] 8. **Minor of \( a_{32} = -1 \)**: \[ M_{32} = \begin{vmatrix} 3 & 4 \\ 2 & 4 \end{vmatrix} = (3)(4) - (4)(2) = 12 - 8 = 4 \] 9. **Minor of \( a_{33} = 1 \)**: \[ M_{33} = \begin{vmatrix} 3 & -3 \\ 2 & -3 \end{vmatrix} = (3)(-3) - (-3)(2) = -9 + 6 = -3 \] Thus, the matrix of minors is: \[ M = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 3 & -3 \\ 0 & 4 & -3 \end{pmatrix} \] ### Step 2: Find the Matrix of Cofactors Next, we apply the checkerboard pattern of signs to the matrix of minors to get the matrix of cofactors. \[ C = \begin{pmatrix} +1 & -2 & +2 \\ -1 & +3 & -3 \\ +0 & -4 & +3 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 2 \\ -1 & 3 & -3 \\ 0 & -4 & 3 \end{pmatrix} \] ### Step 3: Find the Adjoint Matrix The adjoint of the matrix \( A \) is the transpose of the matrix of cofactors. \[ \text{adj}(A) = C^T = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ 2 & -3 & 3 \end{pmatrix} \] ### Final Answer Thus, the adjoint matrix of \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ 2 & -3 & 3 \end{pmatrix} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise TRIGONOMETRIC FUNCTIONS |44 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATHEMATICAL LOGIC |32 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

The adjoint of matrix [(3,2),(-1,4)] is :

Find the adjoint of matrix A = [(2,0,-1),(3,1,2),(-1,1,2)]

Knowledge Check

  • The adjoint of matrix [(1,-4),(3,2)] is

    A
    `[(2,-3),(4,1)]`
    B
    `[(2,-4),(3,1)]`
    C
    `[(-2,3),(-4,-1)]`
    D
    `[(2,4),(-3,1)]`
  • The adjoint of a matrix A=[(3,1,2),(4,5,-1),(3,2,-1)] is

    A
    `[(-7,1,-7),(5,-9,-3),(-11,11,11)]`
    B
    `[(-7,5,-11),(1,-9,11),(-7,-3,11)]`
    C
    `[(-7,5,-11),(1,-9,11),(-7,3,11)]`
    D
    None of these
  • The adjoint of the matrix A=[(1,2,3),(0,5,0),(2,4,3)] is

    A
    `[(6,15,-15),(-3,0,0)(0,-16,5)]`
    B
    `[(15,6,-15),(0,-3-0)(-10,0,5)]`
    C
    `[(-15,6,15),(0,-3,0),(5,0,-16)]`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)] .

    Find the adjoint of matrix A = [(6,5),(3,4)]

    The adjoint of the matrix A=[{:(1,0,2),(2,1,0),(0,3,1):}] is

    If the adjoint of a 3xx3 matrix P is [(1,4,4),(2,1,7),(1,1,3)] , then the possible value (s) of the determinant of P is /are

    If the adjoint of a 3xx3 matrix P is [(1,4,4),(2,1,7),(1,1,3)] then the possibel values of the determinant of P is