Home
Class 12
MATHS
If alpha = cos^(-1)((3)/(5)), beta = tan...

If `alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3))` , where `0 lt alpha, beta lt (pi)/(2)`, then `alpha - beta` is equal to

A

`cos^(-1)((9)/(5sqrt(10)))`

B

`sin^(-1)((9)/(5sqrt(10)))`

C

`tan^(-1)((9)/(5sqrt(10)))`

D

`tan^(-1)(9/14)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha - \beta \) where \( \alpha = \cos^{-1}\left(\frac{3}{5}\right) \) and \( \beta = \tan^{-1}\left(\frac{1}{3}\right) \). ### Step 1: Convert \( \alpha \) to a tangent form Given \( \alpha = \cos^{-1}\left(\frac{3}{5}\right) \), we can find the sine of \( \alpha \) using the identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting \( \cos \alpha = \frac{3}{5} \): \[ \sin^2 \alpha + \left(\frac{3}{5}\right)^2 = 1 \] \[ \sin^2 \alpha + \frac{9}{25} = 1 \] \[ \sin^2 \alpha = 1 - \frac{9}{25} = \frac{16}{25} \] \[ \sin \alpha = \frac{4}{5} \] Now, we can express \( \alpha \) in terms of tangent: \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] ### Step 2: Write \( \alpha - \beta \) in terms of tangent Now we have: \[ \alpha - \beta = \tan^{-1}\left(\frac{4}{3}\right) - \tan^{-1}\left(\frac{1}{3}\right) \] We can use the formula for the difference of two inverse tangents: \[ \tan^{-1} a - \tan^{-1} b = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] Let \( a = \frac{4}{3} \) and \( b = \frac{1}{3} \): \[ \tan(\alpha - \beta) = \tan^{-1}\left(\frac{\frac{4}{3} - \frac{1}{3}}{1 + \frac{4}{3} \cdot \frac{1}{3}}\right) \] Calculating the numerator: \[ \frac{4}{3} - \frac{1}{3} = \frac{3}{3} = 1 \] Calculating the denominator: \[ 1 + \frac{4}{3} \cdot \frac{1}{3} = 1 + \frac{4}{9} = \frac{9}{9} + \frac{4}{9} = \frac{13}{9} \] So we have: \[ \tan(\alpha - \beta) = \tan^{-1}\left(\frac{1}{\frac{13}{9}}\right) = \tan^{-1}\left(\frac{9}{13}\right) \] ### Step 3: Conclusion Thus, we find that: \[ \alpha - \beta = \tan^{-1}\left(\frac{9}{13}\right) \]

To solve the problem, we need to find the value of \( \alpha - \beta \) where \( \alpha = \cos^{-1}\left(\frac{3}{5}\right) \) and \( \beta = \tan^{-1}\left(\frac{1}{3}\right) \). ### Step 1: Convert \( \alpha \) to a tangent form Given \( \alpha = \cos^{-1}\left(\frac{3}{5}\right) \), we can find the sine of \( \alpha \) using the identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting \( \cos \alpha = \frac{3}{5} \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If 0 lt alpha lt beta lt (pi)/(2) then

If alpha=cos^(-1)((3)/(5)),beta=tan^(-1)((1)/(3)) , where 0ltalpha,betalt(pi)/(2) , then alpha-beta is equa to :

Knowledge Check

  • If alpha+beta=pi/(4), then (1+"tan"alpha)(1+"tan"beta) is

    A
    1
    B
    2
    C
    `-1`
    D
    `-2`
  • Similar Questions

    Explore conceptually related problems

    If tan alpha =m/(m+1) and tan beta =1/(2m+1) , then alpha+beta is equal to

    Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals:

    If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

    If alpha=tan^(-1)(t a n(5pi)/4)a n dbeta=tan^(-1)(-tan((2pi)/3)),t h e n (a) 4alpha=3beta (b) 3alpha=4beta (c) alpha-beta=74alpha=(3beta)/(12) (d) none of these

    If alpha=tan^(-1)(t a n(5pi)/4)a n dbeta=tan^(-1)(-tan(2pi)/3),t h e n 4alpha=3beta (b) 3alpha=4beta (c) alpha-beta=74alpha=(3beta)/(12) none of these

    If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

    If sin (alpha + beta) = 4/5 , cos (alpha - beta) = (12)/(13) 0 lt alpha lt (pi)/(4), 0 lt beta lt (pi)/(4), find tan 2 alpha .