Home
Class 12
MATHS
Let S = { theta in [-2pi,2pi]:2 cos^(2)...

Let `S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0}`, then the sum of the elements of S is .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( S = \{ \theta \in [-2\pi, 2\pi] : 2 \cos^2 \theta + 3 \sin \theta = 0 \} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2 \cos^2 \theta + 3 \sin \theta = 0 \] Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \), we can rewrite the equation as: \[ 2(1 - \sin^2 \theta) + 3 \sin \theta = 0 \] This simplifies to: \[ 2 - 2 \sin^2 \theta + 3 \sin \theta = 0 \] Rearranging gives: \[ -2 \sin^2 \theta + 3 \sin \theta + 2 = 0 \] ### Step 2: Rearranging the equation Multiplying through by -1, we get: \[ 2 \sin^2 \theta - 3 \sin \theta - 2 = 0 \] ### Step 3: Factor the quadratic equation Now we will factor the quadratic: \[ (2 \sin \theta + 1)(\sin \theta - 2) = 0 \] This gives us two equations to solve: 1. \( 2 \sin \theta + 1 = 0 \) 2. \( \sin \theta - 2 = 0 \) ### Step 4: Solve for \( \sin \theta \) From the first equation: \[ 2 \sin \theta + 1 = 0 \implies \sin \theta = -\frac{1}{2} \] From the second equation: \[ \sin \theta = 2 \] Since the sine function cannot exceed 1, we discard this solution. ### Step 5: Find angles for \( \sin \theta = -\frac{1}{2} \) The angles for which \( \sin \theta = -\frac{1}{2} \) in the interval \([-2\pi, 2\pi]\) are: \[ \theta = -\frac{\pi}{6}, \quad \theta = -\frac{5\pi}{6}, \quad \theta = \frac{7\pi}{6}, \quad \theta = \frac{11\pi}{6} \] ### Step 6: Sum the elements of \( S \) Now we will sum these angles: \[ -\frac{\pi}{6} + -\frac{5\pi}{6} + \frac{7\pi}{6} + \frac{11\pi}{6} \] Calculating the sum: \[ -\frac{\pi}{6} - \frac{5\pi}{6} = -\frac{6\pi}{6} = -\pi \] \[ \frac{7\pi}{6} + \frac{11\pi}{6} = \frac{18\pi}{6} = 3\pi \] So the total sum is: \[ -\pi + 3\pi = 2\pi \] ### Final Answer Thus, the sum of the elements of \( S \) is: \[ \boxed{2\pi} \]

To solve the equation \( S = \{ \theta \in [-2\pi, 2\pi] : 2 \cos^2 \theta + 3 \sin \theta = 0 \} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2 \cos^2 \theta + 3 \sin \theta = 0 \] Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \), we can rewrite the equation as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If theta in (0, 2pi) and 2sin^2theta - 5sintheta + 2 > 0 , then the range of theta is

If pi < theta < 2pi and z=1+cos theta + i sin theta , then write the value of |z|

Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta ) is purely imaginary } Then the sum of the elements in A is

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

Solve : 2 cos^(2)theta + sin theta le 2 , where pi//2 le theta le 3pi//2.

Solve : 2 cos^(2)theta + sin theta le 2 , where pi/2 le theta le (3pi)/2.

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of tan^(2)""(pi)/(7)tan ^(2)""(2pi)/(7) tan ^(2)""(3pi)/(7) is