Home
Class 12
MATHS
If int(0)^(pi//2) (cot x)/(cot x+cosecx)...

If `int_(0)^(pi//2) (cot x)/(cot x+cosecx)dx=m(pi+n)`, then `m*n` is equal to :

A

1

B

`(1)/(2)`

C

`-(1)/(2)`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cot x}{\cot x + \csc x} \, dx \) and express it in the form \( m\pi + n \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the integrand: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cot x}{\cot x + \csc x} \, dx \] We know that: \[ \cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \csc x = \frac{1}{\sin x} \] Thus, we can rewrite the integrand: \[ \cot x + \csc x = \frac{\cos x}{\sin x} + \frac{1}{\sin x} = \frac{\cos x + 1}{\sin x} \] So, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cot x}{\frac{\cos x + 1}{\sin x}} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{\cot x \cdot \sin x}{\cos x + 1} \, dx \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x + 1} \, dx \] ### Step 2: Use symmetry of the integral Now, we can use the property of definite integrals: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x + 1} \, dx \] We can also consider: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \csc x} \, dx \] This gives us: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \frac{1}{\sin x}} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin^2 x + 1} \, dx \] ### Step 3: Combine the two integrals Now, we can add the two forms of \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\cos x}{\cos x + 1} + \frac{\sin x}{\sin x + 1} \right) \, dx \] This simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \] Thus, we find: \[ I = \frac{\pi}{4} \] ### Step 4: Express in the form \( m\pi + n \) Now we can express \( I \) in the form \( m\pi + n \): \[ I = \frac{\pi}{4} = \frac{1}{4}\pi + 0 \] Here, \( m = \frac{1}{4} \) and \( n = 0 \). ### Step 5: Calculate \( m \cdot n \) Now, we compute: \[ m \cdot n = \frac{1}{4} \cdot 0 = 0 \] ### Final Answer Thus, the value of \( m \cdot n \) is \( 0 \).

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cot x}{\cot x + \csc x} \, dx \) and express it in the form \( m\pi + n \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the integrand: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cot x}{\cot x + \csc x} \, dx \] We know that: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos
  • JEE MAIN REVISION TEST- 24

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) cot x. " cosec"^(2) x dx

Prove that : int_(0)^(pi//2) (dx)/(1+cot x)=(pi)/(4)

Knowledge Check

  • int_(0)^(pi//2) sin 2x log cot x dx is equal to

    A
    `pi`
    B
    `2pi`
    C
    0
    D
    `(pi)/(2)`
  • Similar Questions

    Explore conceptually related problems

    The value of int_(0)^(pi//2n) (1)/(1+cot nx)dx , is

    Evaluate : int_(0)^((pi)/(2)) log (cot x)dx .

    Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

    int_0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

    int_(pi//6)^(pi//2) (" cosec x cot x")/(1+" cosec "^(2) x)dx

    If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\